Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a new research apparatus for measuring the electromagnetic activity of landslides. The basic element of the apparatus is a highly sensitive underground receiver of the magnetic component of the EM field. Such a receiver inserted to the full depth of a landslide well records the levels of magnetic field amplitude at a given depth. Anomalous levels of the magnetic component indicate the existence of landslide slip planes. Combining several receivers into a measurement system will enable continuous monitoring of landslide activity. The article presents examples of studies using the discussed apparatus, which were carried out on real landslides.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
184--195
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
- National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
autor
- Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
Bibliografia
- 1. Petrucci O., Landslide Fatality Occurrence: A Systematic Review of Research Published between January 2010 and March 2022. Sustainability 2022; 14: 1-18.
- 2. Urbański A., Grodecki M. Piles system securing road against landslide. 2D/3D method of numerical modeling and design problems. Bulletin of the Polish Academy of Sciences TechnicaL Sciences 2020; 68: 1433-1442.
- 3. Hungr O., Leroueil S. The Varnes classification of landslide types, an update. Landslides 2014; 11: 167-194.
- 4. Argyriou A.V., Polykretis C., Teeuw C.R.M., Papadopoulos N. Geoinformatic Analysis of RainfallTriggered Landslides in Crete (Greece) Based on Spatial Detection and Hazard Mapping. Sustainability 2022; 14: 1–25.
- 5. Stark T.D., Choi H. Slope inclinometers for landslides. Landslides 2008; 5: 339-350.
- 6. Stumvoll M.J., Canlil E., Engels A., Thiebes B., Groiss B., Glade T., Schweigl J., Bertagnoli M. The “Salcher” landslide observatory – experimental long-term monitoring in the Flysch Zone of Lower Austria. Bulletin of Engineering Geology and the Environment 2019; 79: 1-18.
- 7. Jaboyedoff M., Carrea D., Derron M.H., Oppikofer T., Penna I.M., Rudaz B. A review of methods used to estimate initial landslide failure surface depths and volumes. Engineering Geology 2020; 262: 1-18
- 8. Wang G.O. Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution:acase study in Puerto Rico. Journal of Geodetic Science 2013; 3: 22-31.
- 9. Zhu X., Xu Q., Zhou J., Deng M. Remote landslide observation system with differential GPS. Procedia Earth and Planetary Science 2012; 5: 70-75.
- 10. Saha A., Govind V., Villuri K., Bhardwaj A. Development and assessment of GIS-based landslide susceptibility mapping models using ANN, fuzzy-AHP, and MCDA in Darjeeling Himalayas West Bengal. India. Land 2022; 11: 1-27.
- 11. Zainal M., Munir B., Marwan M. The electrical resistivity tomography technique for landslide characterization in Blangkejeren Aceh. Journal of Physics: Conference Series IOP Publishing 2021; 53: 1-14.
- 12. Heinze T., Limbrock J.K., Pudasaini S.P., Kemna A. Relating mass movement with electrical self- potential signals. Geophysical Journal International 2018; 216: 55-60.
- 13. Akinlabi I.A., Akinrimisi, O.E., Fabunmi M.A. Subsurface investigation of landslide using electrical resistivity and self-potential methodsin Oke-Igbo, Fig. 13. Curve of electrical resistivity sounding along the borehole on the landslide in Jaroszow Southwestern Nigeria. IOSR Journal of Applied Geology and Geophysics 2018; 6: 67-74.
- 14. Borecka A., Herzig J. Ground penetrating radar investigations of landslides: a case study in a landslide in Radziszów. Studia Geotechnica et Mechanica 2015; 37: 1-8.
- 15. Moretto S., Bozzano F., Mazzanti P. The Role of Satellite InSAR for Landslide Forecasting: Limitations and Openings. Remote Sensing 2021; 13: 1-31.
- 16. Huang C., Li F., Wei L., Hu X., Yang Y. Landslide susceptibility modeling using a deep random neural network. Applied Sciences 2022; 12: 1-19.
- 17. Li H.W.M., Lo F.L.C., Wong T.K.C., Cheung R.W.M. Machine learning-powered rainfall-based landslide predictions in Hong Kong – An exploratory study. Applied Sciences 2022; 12: 1-24.
- 18. Esmaeilabadi R., Shahri A.A. Prediction of site response spectrum under earthquake vibration using an optimized developed artificial neural network model. Advances in Science and Technology Research Journal 2016; 10(30): 76-83
- 19. Hoffman M. On potential use of natural electromagnetic emissions in ELF, VLF and HF radio bands at active landslide areas: Preliminary results from Vinohrady nad Vahom site (Slovakia). Contributions to Geophysics and Geodesy 2022; 52: 113-125.
- 20. Greiling R.O., Obermeyer H. Natural electromagnetic radiation (EMR) and its application in structural geology and neotectonics. Journal Geological Society of India 2010; 25: 278-288.
- 21. Krumbholz M. Electromagnetic radiation as a tool to determine actual crustal stresses – applications and limitations. Doctoral thesis; Georg-August- Universität zu Göttingen; Germany, 2010
- 22. Meng Y., Chen G., Huang M. Piezoelectric materials: properties, advancements, and design strategies for high-temperature applications. Nanomaterials 2022; 12: 1-32.
- 23. Reppert P.M., Morgan F.D., Lesmes D.P., Jouniax L. Frequency dependent streaming potentials. Journal of Colloid and Interface Sciences 2001; 234: 194-203.
- 24. Pride S.R., Morgan F.D. Electrokinetic dissipation induced by seismic waves. Geophysics 1991; 56: 902-1121.
- 25. Adler P.M. Macroscopic electroosmotic coupling coefficient in random porous media. Mathematical Geology 2001; 33: 63-93.
- 26. Eccles D., Sammonds P.R., Clint O.C. Laboratory studies of electrical potential during rock failure. International Journal of Rock Mechanics & Mining Sciences 2005; 42: 933-949.
- 27. Heister K., Kleingeld P.J., Keijzer T.J.S., Loch G. A new laboratory set-up for measurement of electrical, hydraulic and osmotic fluxes in clays. Engineering Geology 2005; 77: 295-393.
- 28. Kharkhalis N.R. Manifestation of natural electromagnetic pulse emission on landslide slopes. Geophysical Journal 1995; 14: 437-443.
- 29. Fedorov E., Pilipenko V., Uyeda S. Electric and magnetic fields generated by electrokinetic processes in a conductive crust. Physics and Chemistry of the Earth 2001; 26: 793-799.
- 30. Kormiltsev V.V., Ratushnyak A.N., Shapiro V.A. Three dimensional modeling of electric and magnetic fields inducted by the fluid flow in porous media. Physics of the Earth and Planetary Interiors 1998; 105: 109-118.
- 31. Lin P., Wei P., Wang C., Kang S., Wang X. Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing. Journalof Rock Mechanics and Geotechnical Engineering 2021; 13: 798-810.
- 32. Tietze U., Schenk C., Gamm E. Electronic Circuits Handbook for Design and Application, 2nd ed.; Springer, 2011.
- 33. Bolton T., Cohen M.B. Optimal design of electrically-small loop receiving antenna. Progress In Electromagnetics Research C 2020; 98: 155–169.
- 34. Dyo V., Ajmal T., Allen B., Jazani D., Ivanov I. Design of a ferrite rod antenna for harvesting Energy from medium wave broadcast signals. The Journal of Engineering 2013; 12: 89-96
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3263c7b7-e280-4c82-b650-e850fa8f7f53