PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Apparatus for the Measurement of Electromagnetic Activity of Landslides

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a new research apparatus for measuring the electromagnetic activity of landslides. The basic element of the apparatus is a highly sensitive underground receiver of the magnetic component of the EM field. Such a receiver inserted to the full depth of a landslide well records the levels of magnetic field amplitude at a given depth. Anomalous levels of the magnetic component indicate the existence of landslide slip planes. Combining several receivers into a measurement system will enable continuous monitoring of landslide activity. The article presents examples of studies using the discussed apparatus, which were carried out on real landslides.
Twórcy
  • National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
Bibliografia
  • 1. Petrucci O., Landslide Fatality Occurrence: A Systematic Review of Research Published between January 2010 and March 2022. Sustainability 2022; 14: 1-18.
  • 2. Urbański A., Grodecki M. Piles system securing road against landslide. 2D/3D method of numerical modeling and design problems. Bulletin of the Polish Academy of Sciences TechnicaL Sciences 2020; 68: 1433-1442.
  • 3. Hungr O., Leroueil S. The Varnes classification of landslide types, an update. Landslides 2014; 11: 167-194.
  • 4. Argyriou A.V., Polykretis C., Teeuw C.R.M., Papadopoulos N. Geoinformatic Analysis of RainfallTriggered Landslides in Crete (Greece) Based on Spatial Detection and Hazard Mapping. Sustainability 2022; 14: 1–25.
  • 5. Stark T.D., Choi H. Slope inclinometers for landslides. Landslides 2008; 5: 339-350.
  • 6. Stumvoll M.J., Canlil E., Engels A., Thiebes B., Groiss B., Glade T., Schweigl J., Bertagnoli M. The “Salcher” landslide observatory – experimental long-term monitoring in the Flysch Zone of Lower Austria. Bulletin of Engineering Geology and the Environment 2019; 79: 1-18.
  • 7. Jaboyedoff M., Carrea D., Derron M.H., Oppikofer T., Penna I.M., Rudaz B. A review of methods used to estimate initial landslide failure surface depths and volumes. Engineering Geology 2020; 262: 1-18
  • 8. Wang G.O. Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution:acase study in Puerto Rico. Journal of Geodetic Science 2013; 3: 22-31.
  • 9. Zhu X., Xu Q., Zhou J., Deng M. Remote landslide observation system with differential GPS. Procedia Earth and Planetary Science 2012; 5: 70-75.
  • 10. Saha A., Govind V., Villuri K., Bhardwaj A. Development and assessment of GIS-based landslide susceptibility mapping models using ANN, fuzzy-AHP, and MCDA in Darjeeling Himalayas West Bengal. India. Land 2022; 11: 1-27.
  • 11. Zainal M., Munir B., Marwan M. The electrical resistivity tomography technique for landslide characterization in Blangkejeren Aceh. Journal of Physics: Conference Series IOP Publishing 2021; 53: 1-14.
  • 12. Heinze T., Limbrock J.K., Pudasaini S.P., Kemna A. Relating mass movement with electrical self- potential signals. Geophysical Journal International 2018; 216: 55-60.
  • 13. Akinlabi I.A., Akinrimisi, O.E., Fabunmi M.A. Subsurface investigation of landslide using electrical resistivity and self-potential methodsin Oke-Igbo, Fig. 13. Curve of electrical resistivity sounding along the borehole on the landslide in Jaroszow Southwestern Nigeria. IOSR Journal of Applied Geology and Geophysics 2018; 6: 67-74.
  • 14. Borecka A., Herzig J. Ground penetrating radar investigations of landslides: a case study in a landslide in Radziszów. Studia Geotechnica et Mechanica 2015; 37: 1-8.
  • 15. Moretto S., Bozzano F., Mazzanti P. The Role of Satellite InSAR for Landslide Forecasting: Limitations and Openings. Remote Sensing 2021; 13: 1-31.
  • 16. Huang C., Li F., Wei L., Hu X., Yang Y. Landslide susceptibility modeling using a deep random neural network. Applied Sciences 2022; 12: 1-19.
  • 17. Li H.W.M., Lo F.L.C., Wong T.K.C., Cheung R.W.M. Machine learning-powered rainfall-based landslide predictions in Hong Kong – An exploratory study. Applied Sciences 2022; 12: 1-24.
  • 18. Esmaeilabadi R., Shahri A.A. Prediction of site response spectrum under earthquake vibration using an optimized developed artificial neural network model. Advances in Science and Technology Research Journal 2016; 10(30): 76-83
  • 19. Hoffman M. On potential use of natural electromagnetic emissions in ELF, VLF and HF radio bands at active landslide areas: Preliminary results from Vinohrady nad Vahom site (Slovakia). Contributions to Geophysics and Geodesy 2022; 52: 113-125.
  • 20. Greiling R.O., Obermeyer H. Natural electromagnetic radiation (EMR) and its application in structural geology and neotectonics. Journal Geological Society of India 2010; 25: 278-288.
  • 21. Krumbholz M. Electromagnetic radiation as a tool to determine actual crustal stresses – applications and limitations. Doctoral thesis; Georg-August- Universität zu Göttingen; Germany, 2010
  • 22. Meng Y., Chen G., Huang M. Piezoelectric materials: properties, advancements, and design strategies for high-temperature applications. Nanomaterials 2022; 12: 1-32.
  • 23. Reppert P.M., Morgan F.D., Lesmes D.P., Jouniax L. Frequency dependent streaming potentials. Journal of Colloid and Interface Sciences 2001; 234: 194-203.
  • 24. Pride S.R., Morgan F.D. Electrokinetic dissipation induced by seismic waves. Geophysics 1991; 56: 902-1121.
  • 25. Adler P.M. Macroscopic electroosmotic coupling coefficient in random porous media. Mathematical Geology 2001; 33: 63-93.
  • 26. Eccles D., Sammonds P.R., Clint O.C. Laboratory studies of electrical potential during rock failure. International Journal of Rock Mechanics & Mining Sciences 2005; 42: 933-949.
  • 27. Heister K., Kleingeld P.J., Keijzer T.J.S., Loch G. A new laboratory set-up for measurement of electrical, hydraulic and osmotic fluxes in clays. Engineering Geology 2005; 77: 295-393.
  • 28. Kharkhalis N.R. Manifestation of natural electromagnetic pulse emission on landslide slopes. Geophysical Journal 1995; 14: 437-443.
  • 29. Fedorov E., Pilipenko V., Uyeda S. Electric and magnetic fields generated by electrokinetic processes in a conductive crust. Physics and Chemistry of the Earth 2001; 26: 793-799.
  • 30. Kormiltsev V.V., Ratushnyak A.N., Shapiro V.A. Three dimensional modeling of electric and magnetic fields inducted by the fluid flow in porous media. Physics of the Earth and Planetary Interiors 1998; 105: 109-118.
  • 31. Lin P., Wei P., Wang C., Kang S., Wang X. Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing. Journalof Rock Mechanics and Geotechnical Engineering 2021; 13: 798-810.
  • 32. Tietze U., Schenk C., Gamm E. Electronic Circuits Handbook for Design and Application, 2nd ed.; Springer, 2011.
  • 33. Bolton T., Cohen M.B. Optimal design of electrically-small loop receiving antenna. Progress In Electromagnetics Research C 2020; 98: 155–169.
  • 34. Dyo V., Ajmal T., Allen B., Jazani D., Ivanov I. Design of a ferrite rod antenna for harvesting Energy from medium wave broadcast signals. The Journal of Engineering 2013; 12: 89-96
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3263c7b7-e280-4c82-b650-e850fa8f7f53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.