PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple and Combined Pretreatment of a Mixture of Forestry and Aromatic-Medicinal Plant Waste by Chemical, Physical and Enzymatic Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forestry waste (FW) extracted parts ofmedicinal-aromatic plant waste (EPW) and unused parts (UPW) are considered potential resources for energy recovery (their heating value of approximately 19 MJ/kg).In order to valorize lignocellulosic biomass, a pretreatment process is required to hydrolyze the recalcitrant lignocellulosic complex into fermentable simple sugars. The aim of this study is to determine the best method of pretreatment that takes into account treatment time, efficiency, and environmental friendliness. The mixture of FW, EPW, and UPW was treated by simple and combined treatment using different methods like acid sulfuric (Ac), steam explosion (SE), and enzymatic (E) (cellulase and hemicellulase).The results showed that the combined and simple Ac treatments are the mostefficient compared with SE and E treatments in the hydrolysis of polysaccharide of cellulose with a rate respectively of 90.5% and 77.6% and hemicellulose with a rate respectively of 80.63% and 87.14%. In addition, both of the preceding methods release an important rate of total phenolic compounds. Combined treatment demands high time but is friendly (approximately 1 day), and Ac treatment is less time-consuming (about 25 min) but harmful to the environment and causes the corrosion of equipment.In conclusion, combined treatment can be the best method and the high time required can be reduced with the progress of the research.
Rocznik
Strony
376--383
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Laboratory of Engineering, Electrochemistry, Modelization and Environment, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
  • Laboratory of Bioactives-Health and Environment, Faculty of Sciences Meknes, Meknes 50000, Morocco
autor
  • Polyvalent Laboratory in Research and Development, Department of Biology, Poly Disciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal 23000, Morocco
  • Polyvalent Laboratory in Research and Development, Department of Biology, Poly Disciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal 23000, Morocco
  • Laboratory of Engineering, Electrochemistry, Modelization and Environment, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
  • Laboratory of Environmental Biotechnology, Agri-food, Health Sidi Mohamed Ben Abdellah University, Faculty of Sciences, Fez, Morocco
  • Laboratory of Engineering, Electrochemistry, Modelization and Environment, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
autor
  • Laboratory of Engineering, Electrochemistry, Modelization and Environment, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
Bibliografia
  • 1. Banu Jamaldheen, S., Kurade, M.B., Basak, B., Yoo, C.G., Oh, K.K., Jeon, B.H., Kim, T.H., 2022. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour. Technol. 346, 126591. https://doi.org/10.1016/j.biortech.2021.126591
  • 2. Barisik, G., Isci, A., Kutlu, N., Bagder Elmaci, S., Akay, B., 2016. Optimization of organic acid pretreatment of wheat straw. Biotechnol. Prog. 32, 1487–1493. https://doi.org/10.1002/btpr.2347
  • 3. Bendaoud, A., Lahkimi, A., Kara, M., Moubchir, T., Assouguem, A., Belkhiri, A., Allali, A., Hmamou, A., Almeer, R., Sayed, A.A., Peluso, I., Eloutassi, N., 2022. Field Study and Chemical Analysis of Plant Waste in the Fez-Meknes Region, Morocco. Sustain. 14. https://doi.org/10.3390/su14106029
  • 4. bp, 2021. Full report – Statistical Review of World Energy 2021.
  • 5. Brummer, V., Skryja, P., Jurena, T., Hlavacek, V., Stehlik, P., 2014. Suitable Technological Conditions for Enzymatic Hydrolysis of Waste Paper by Novozymes® Enzymes NS50013 and NS50010. Appl. Biochem. Biotechnol. 174, 1299–1308. https://doi.org/10.1007/s12010-014-1119-4
  • 6. Bułkowska, K., Klimiuk, E., 2016. Pretreatment of lignocellulosic biomass. Biomass for Biofuels 121–153. https://doi.org/10.1201/9781315226422
  • 7. Dharma Patria, R., Rehman, S., Vuppaladadiyam, A.K., Wang, H., Lin, C.S.K., Antunes, E., Leu, S.Y., 2022. Bioconversion of food and lignocellulosic wastes employing sugar platform: A review of enzymatic hydrolysis and kinetics. Bioresour. Technol. 352, 127083. https://doi.org/10.1016/J.BIORTECH.2022.127083
  • 8. Eloutassi, N., Louaste, B., Boudine, L., Remmal, A., 2014a. Hydrolyse physico-chimique et biologique de la biomasse ligno-cellulosique pour la production de bio-éthanol de deuxième génération.
  • 9. Eloutassi, Noureddine, Bouchra, L., Ben, S.M., Sidi, A.R., Ben, M., Eloutassi, N, Louaste, B., Boudine, L., Remmal, A., 2014b. Valorisation de la biomasse lignocellulosique pour la production de bioéthanol de deuxième génération Oocysticidal Effect of Essential Oils (EOs) and their Major Components on Cryptosporidium baileyi and Cryptosporidium galli View project Extraction of Essential Oils View project Valorisation de la biomasse lignocellulosique pour la production de bioéthanol de deuxième génération, Revue des Energies Renouvelables.
  • 10. Fabiano, E., Constantin, L., Terentjevs, A., Della Sala, F., Cortona, P., 2015. Bioethanol production from coconuts and cactus pretreated byautohydrolysis. Theor. Chem. Acc. 139, 1.
  • 11. Fitria, Ruan, H., Fransen, S.C., Carter, A.H., Tao, H., Yang, B., 2019. Selecting winter wheat straw for cellulosic ethanol production in the Pacific North-west, U.S.A. Biomass and Bioenergy 123, 59–69. https://doi.org/10.1016/j.biombioe.2019.02.012
  • 12. Godin, B., Ghysel, F., Agneessens, R., 2010. Cellulose, hemicelluloses, lignin, and ash contents in various lignocellulosic crops for second generation bioethanol production, Biotechnol. Agron. Soc. Environ.
  • 13. Grippi, D., Clemente, R., Bernal, M.P., 2020. Chemical and Bioenergetic Characterization of Biofuels from Plant Biomass: Perspectives for Southern Europe. https://doi.org/10.3390/app10103571
  • 14. Kumar, L., Arantes, V., Chandra, R., Saddler, J., 2012. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour. Technol. 103, 201–208. https://doi.org/10.1016/J.BIORTECH.2011.09.091
  • 15. Kumari, D., Singh, R., 2018. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 90, 877–891. https://doi.org/10.1016/j.rser.2018.03.111
  • 16. Maitan-Alfenas, G.P., Visser, E.M., Guimarães, V. ria M., 2015. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr. Opin. Food Sci. 1, 44–49. https://doi.org/10.1016/J.COFS.2014.10.001
  • 17. Mohammad Rahmani, A., Gahlot, P., Moustakas, K., Kazmi, A.A., Shekhar Prasad Ojha, C., Tyagi, V.K., 2022. Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel 319. https://doi.org/10.1016/j.fuel.2022.123726
  • 18. R Core Team, 2022. R:A Language and Environment for Statistical Computingtle.
  • 19. Sindhu, R., Binod, P., Pandey, A., 2016. Biological pretreatment of lignocellulosic biomass-An overview. Bioresour. Technol. J. 199, 76–82. https://doi.org/10.1016/j.biortech.2015.08.030
  • 20. Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158.
  • 21. Solarte-Toro, J.C., Romero-García, J.M., Martínez-Patiño, J.C., Ruiz-Ramos, E., Castro-Galiano, E., Cardona-Alzate, C.A., 2019. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 107, 587–601. https://doi.org/10.1016/J.RSER.2019.02.024
  • 22. Stanley, J.T., Thanarasu, A., Senthil Kumar, P., Periyasamy, K., Raghunandhakumar, S., Periyaraman, P., Devaraj, K., Dhanasekaran, A., Subramanian, S., 2022. Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion-A review. https://doi.org/10.1016/j.fuel.2022.123593
  • 23. Tang, Y., Chandra, R.P., Sokhansanj, S., Saddler, J.N., 2018. Influence of steam explosion processes on the durability and enzymatic digestibility of wood pellets. Fuel 211, 87–94. https://doi.org/10.1016/J.FUEL.2017.09.053
  • 24. Thamizhakaran Stanley, J., Thanarasu, A., Senthil Kumar, P., Periyasamy, K., Raghunandhakumar, S., Periyaraman, P., Devaraj, K., Dhanasekaran, A., Subramanian, S., 2022. Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion- A review. Fuel 318. https://doi.org/10.1016/j.fuel.2022.123593
  • 25. Tian, S.Q., Zhao, R.Y., Chen, Z.C., 2018. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew. Sustain. Energy Rev. 91, 483–489. https://doi.org/10.1016/J.RSER.2018.03.113
  • 26. Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 74, 3583–3597. https://doi.org/10.3168/JDS.S0022-0302(91)78551-2
  • 27. Wu, L., Wei, W., Liu, X., Wang, D., Ni, B.J., 2022. Potentiality of recovering bioresource from food waste through multi-stage Co-digestion with enzymatic pretreatment. J. Environ. Manage. 319, 115777. https://doi.org/10.1016/J.JENVMAN.2022.115777
  • 28. Yu, Y., Wu, J., Ren, X., Lau, A., Rezaei, H., Takada, M., Bi, X., Sokhansanj, S., 2022. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2021.111871
  • 29. Zabed, H.M., Akter, S., Yun, J., Zhang, G., Awad, F.N., Qi, X., Sahu, J.N., 2019. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 105, 105–128. https://doi.org/10.1016/j.rser.2019.01.048
  • 30. Ziegler-Devin, I., Menana, Z., Chrusciel, L., Chalot, M., Bert, V., Brosse, N., 2019. Steam explosion pretreatment of willow grown on phytomanaged soils for bioethanol production. Ind. Crops Prod. 140, 111722. https://doi.org/10.1016/J.INDCROP.2019.111722
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32632f88-bb94-4a69-83c0-7550f6209b9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.