PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and Optimization of Casting System for Integrated Longitudinal Beam and Tower Package Based on Al-Si Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study optimized the integrated die-casting of an aluminum alloy longitudinal beam and tower component using no heat-treated aluminum alloy. Leveraging material properties and part geometry, a pouring system was designed and refined through mold flow analysis. This optimized the velocity, temperature distribution, and air entrapment to reduce defects like shrinkage porosity. The optimized pouring parameters were 695 °C melt temperature, 210 °C initial mold temperature, and 4.9 m/s shot speed. This reduced shrinkage porosity by 10.4% versus the original design. Die-casting trials with the optimized pouring system produced defect-free castings. The critical load-bearing section of the die casting had a yield strength of 184 MPa and elongation of 10.9%, which can meet the production requirements. In summary, based on the optimization of pouring system by mold flow analysis, by developing the integrated die casting process for aluminum alloy. Not only the defects are eliminated, but also the castings with sufficient mechanical properties are produced.
Twórcy
autor
  • School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • Wuhu Rayhoo Lightweight Technology Co., LTD., Wuhu, 241000, China
autor
  • Wuhu Rayhoo Lightweight Technology Co., LTD., Wuhu, 241000, China
autor
  • School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Bibliografia
  • 1. Stefan H., Erhard K., Peter S. Development of an aluminum compound casting process - experiments and numerical simulations. Journal of Materials Processing Tech. 2019; 279. DOI: 10.1016/j. jmatprotec.2019.116578.
  • 2. Guan R.G., Lou H.F., Huang H., et al. Development status, trends, and prospects of aluminum alloy materials. China Engineering Science 2020; 22(05): 68–75.
  • 3. Babu M., Yuvaraju M., Babu K., et al. Micro structural and hardness study of Al 6065 and CaSiO3 composite with stir casting route. Advances in Science and Technology 2022; 75–79.
  • 4. Hu HJ., Liu XX., Sun XH., et al. Development and application of light-weight design of the aluminium alloy wheel. Applied Mechanics and Materials 2013; 2341: 253–257. DOI: 10.4028/www.scientific.net/AMM.310.253.
  • 5. Zhang Q., Cao M., Zhang D., et al. Research on integrated casting and forging process of aluminum automobile wheel. Advances in Mechanical Engineering 2014; 6(7): 870182–870182. DOI: 10.1155/2014/870182.
  • 6. Duan H.Q., HanZ.Y., Wang B. Research progres of non-heat treatment die cast aluminum alloy for automotive structural parts. Automobile Technology and Material 2022; (05): 1–6. DOI: 10.19710/J. cnki.1003-8817.20210359.
  • 7. Zhao J., Zhang Z., Liu S., et al. Elimination of mis- run and gas hole defects of investment casting TiAl alloy turbocharger based on numerical simulation and experimental study. China Foundry 2020; 17(1): 29–34. DOI: 10.1007/s41230-020-8151-5.
  • 8. Zhi Y.H., Dong H.Z., Xu S., et al. Simulation of α-Al grain formation in high vacuum die-casting Al-Si-Mg alloys with multi-component quantitative cellular automaton method. China Foundry 2022; 19(2). DOI: 10.1007/S41230-022-1176-1.
  • 9. Wang X.J., Zhu S.M., Easton M., et al. Heat treatment of vacuum high pressure die cast magnesium alloy AZ91. International Journal of Cast Metals Research 2014; 27(3). DOI: 10.1179/1743133613Y.0000000091.
  • 10. Kuo J., Huang P., Lai H., et al. Optimal gating system design for investment casting of 17-4PH stainless steel enclosed impeller by numerical simulation and experimental verification. The International Journal of Advanced Manufacturing Technology 2017; 92(1–4). DOI: 10.1007/s00170-017-0198-0.
  • 11. Wan L., Hu Z., Wu S., et al. Mechanical properties and fatigue behavior of vacuum-assist die cast AlMgSiMn alloy. Materials Science & Engineering A. 2013; 576. DOI: 10.1016/j.msea.2013.03.042.
  • 12. Dojka R., Jezierski J., Tiedje S. Geometric Form of gating system elements and its influence on the initial filling phase. Journal of Materials Engineering and Performance 2019; 28(7): 3922–3928. DOI: 10.1007/s11665-019-03973-9.
  • 13. Małysza M., Żuczek R., Wilk-Kołodziejczyk D., et al. Technological optimization of the stirrup casting process with the use of computer simulations. Materials 2022; 15(19). DOI: 10.3390/MA15196781.
  • 14. Rueda A.N., Escobar A.J. Reconstruction of the lost Muisca Siecha raft pouring process by reverse engineering methodology. Materials and Manufacturing Processes 2017; 32: 7–8. DOI: 10.1080/10426914.2017.1279324.
  • 15. Dong Q.P., Yin Y.B., Zhu Z., et al. Motion and distribution of floating grain in direct-chill casting of aluminum alloys: experiments and numerical Modeling. Materials (Basel, Switzerland) 2020; 13(23). DOI: 10.3390/MA13235379.
  • 16. Shin J., Kim T., Kim D., et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications. Journal of Alloys and Compounds 2017; 698. DOI: 10.1016/j. jallcom.2016.12.269.
  • 17. Kiaee M., Sulaiman S., Tang H.S., et al. Investigation on microstructure and mechanical properties of squeeze cast Al-Si alloys by numerical simulation. Advanced Materials Research 2014; 3545(1043–1043): 31–35. DOI: 10.4028/www.scientific.net/AMR.1043.31.
  • 18. Ju-fu J., Ning G., Min-jie H., et al. Numerical simulation of squeeze casting of aluminum alloy flywheel housing with large wall thickness difference and complex shape. Transactions of Nonferrous Metals Society of China 2023; 33(5): 1345–1360. DOI: 10.1088/1742-6596/2587/1/012099.
  • 19. Kolhe P.K., Gebrekidan H.A. Studies of A356 Aluminum alloy for sand mould casting gating System. Journal of Engineering Research and Reports 2022; 1–13. DOI: 10.9734/JERR/2022/V22I917558.
  • 20. Hou Y., Wu M., Huang F., et al. Defect band formation in high pressure die casting AE44 magnesium alloy. China Foundry 2022; 19(03): 201–210. DOI: 10.1007/S41230-022-1220-1.
  • 21. Dong Y., Yang G., Zhu G., et al. Research on semantic based modeling method for die casting mold runner. Journal of Mechanical Engineering 2018; 54 (09): 224–232.
  • 22. Mi G.F., Liu X.Y., Wang K.F. Numerical simulation of low pressure die-casting aluminum wheel. China Foundry 2009; 6(1)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-325641f3-0cc6-4a65-baa4-2c1ebb743c12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.