PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mathematical modeling of the stress-strain state of the annular preventer seal using the theory of reinforced shells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Management of wells in the process of their construction is one of the important factors in ensuring the safety of the technological process. Blowout equipment, which includes annular preventers, is used to control the wells. This applies to the construction of oil and gas wells, or wells that provide degassing of coal seams to reduce their gas-dynamic activity. For the purpose of safe and long-term operation of annular preventers on the basis of the theory of thick-walled combined reinforced shells and the carried-out analytical research, the mathematical model for research of a stress-strain condition of a seal of an annular preventer has been offered. Taking into consideration the real design, the seal of the annular preventer is modeled by a rubber shell, reinforced in the circular direction by rubber frames, and in the longitudinal direction by metal stringers. The mathematical model provides for determining the stiffness, internal force factors and stresses in the longitudinal and transverse sections of the combined rubber-metal seal, considering the peculiarities of its operation. At the same time, the model includes the conditions of interaction of the rubber base of the seal with a pipe, as well as the action of sealing pressure under operating conditions. The use of the proposed mathematical model reduces the costs of experimental research and will contribute to ensuring the reliability of simulation modeling results. The advantage of the method is the determination of calculated loads at different points of the combined seal under the existing state of dangerous zones and the influence of operating conditions. In the meantime, prerequisites have been created for expanding the possibilities of simulation modeling and designing structural elements of annular preventers with increased operational characteristics. The practical value of the obtained results is determined by the possibility of using them to ensure the performance of the rubber-metal seal both at the stage of its design and during the operation.
Rocznik
Strony
375--380
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Ivano-Frankivsk -National -Technical-University-of-Oil - and Gas, -15 -Karpatska st., -76019, -Ukraine
autor
  • Ivano-Frankivsk -National -Technical-University-of-Oil - and Gas, -15 -Karpatska st., -76019, -Ukraine
autor
  • Ivano-Frankivsk -National -Technical-University-of-Oil - and Gas, -15 -Karpatska st., -76019, -Ukraine
autor
  • Ivano-Frankivsk -National -Technical-University-of-Oil - and Gas, -15 -Karpatska st., -76019, -Ukraine
  • Ivano-Frankivsk -National -Technical-University-of-Oil - and Gas, -15 -Karpatska st., -76019, -Ukraine
autor
  • Czestochowa University of Technology, Al. Armii Krajowej 19b, 42-200 Częstochowa, Poland; Tel.: + 380958601575
Bibliografia
  • 1. Avramov, K.V., Zholos, O.V., 2015. Svobodnyie kolebaniya orebrennyih tonkostennyih tsilindricheskih obtekateley raketonositeley. Visnik NTU “HPI”, 55, 13-15.
  • 2. Belica, T., Malinowski, M., Magnucki, K., 2011. Dynamic Stability of an Isotropic Metal Foam Cylindrical Shell Subjected to External Pressure and Axial Compression. Journal of Applied Mechanics, 78(4), DOI: 10.1115/1.4003768
  • 3. Byrher, Y.A., Shorr, B.F., Shneiderovych, R.M., 1966. Raschet na prochnost detalei mashyn, M, 616
  • 4. Ciarlet, P.G., 2021. Mathematical Elasticity: Theory of Shells. Society for Industrial and Applied Mathematics, DOI: 10.1137/1.9781611976823
  • 5. Daisuke, F., Takayasu, M., 2010. Discrete Variational Derivative Method., Chapman and Hall/CRC, DOI: 10.1201/b10387
  • 6. Dzhus, A., Andrusyak, A., Grydzhuk, Ja., Romanyshyn, T., 2018. Development of a method for assessing the capacity of equipment for the transportation of compressed natural gas. Eastern-European Journal of Enterprise Technologies, 94, 13-17, ISSN 1729-3774 4/710.15587/1729-4061.2018.139603
  • 7. Estrada, R., Kanwal, R.P., 2000. Singular Integral Equations., Birkhäuser Boston, DOI: 10.1007/978-1-4612-1382-6
  • 8. Hui, Y., Yalei, Z., Jianguo, L., Hongyuan J., 2016. Analyses toward factors influencing sealing clearance of a metal rubber seal and derivation of a calculation formula. Chinese Journal of Aeronautics, 29(1), 292-296, DOI: 10.1016/j.cja.2015.09.002
  • 9. Mark Allen Group, 2018. Metal-to-metal well equipment seal. Sealing Technology, 2018(9), 13, DOI: 10.1016/s1350-4789(18)30377-5
  • 10. Mykhailiuk, B.B., Chudyk, I.I., Mosora Yu, R., 2021. On the possibility of using simulation modeling for research and design of universal preventer seals. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, 1(50), 53-61, DOI: 10.31471/1993-9965-2021-1(50)-53-61
  • 11. Reddy, J.N., 2006. Theory and Analysis of Elastic Plates and Shells., CRC Press, DOI: 10.1201/9780849384165
  • 12. Sexsmith, F.H., 2018. Rubber-to-Metal Bonding. Rubber Products Manufacturing Technology, 449-472, Routledge, DOI: 10.1201/9780203740378-11
  • 13. Shengshan, P., Muzhou, Z., Bassem, A., Hang, Z., Lian, L., 2020. Compressive behavior of cylindrical rubber buffer confined with fiber reinforced polymer. Journal of Low Frequency Noise, Vibration and Active Control, 39(3), 470-484.10.1177/1461348418783570
  • 14. Su, B., Zhou, Z., Xiao, G., Wang, Z., Shu, X., Li, Z., 2017. A pressure-dependent phenomenological constitutive model for transversely isotropic foams, International Journal of Mechanical Sciences, 120, 237-248.10.1016/j.ijmecsci.2016.12.004
  • 15. Tsyss, V.G., Sergaeva, M.Yu., 2016. Simulating of the composite cylindrical shell of the pipe of the supply pipelines based on ANSYS package. Procedia Engineering, 152, 332-338.10.1016/j.proeng.2016.07.712
  • 16. Ugural, A.C., 2017. Plates and Shells. CRC Press, DOI: 10.1201/9781315104621
  • 17. Yasnii, P.V., Pyndus, Yu.I., Hud, M.I., 2016. Analiz chastot i form vlasnykh kolyvan pidsylenykh tsylindrychnykh obolonok. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu, 3, 7-15.
  • 18. Yasnii, P.V., Pyndus, Yu.I., Hud, M.I., 2020. Analysis of the stress-strain state of a reinforced cylindrical shell with free transverse oscillations. Prospecting and Development of Oil and Gas Fields, 4(77), 41-49, DOI: 10.31471/1993-9973-2020-4(77)-41-49
  • 19. Zhang, Wan-Fu, Yang, Jian-Gang, Li, Chun, Tian, Yong-Wei, 2014. Comparison of leakage performance and fluid-induced force of turbine tip labyrinth seal and a new kind of radial annular seal. Computers & Fluids, 105, 125-137, DOI: 10.1016/j.compfluid.2014.09.010
  • 20. Zhong, J., Ren, J., Ma. D., 2018. Study on the Deformation and Stress Analysis of the Sponge/Rubber Adapter. Mathematical Problems in Engineering, 117-125.10.1155/2018/9730540
  • 21. Zubko, V.I., Shopa, V.M., 2001. Zghyn paketiv transversalno-izotropnykh plastyn. Ivano-Frankivsk, 266.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32555ad8-7ea3-4928-a458-dfdc740b4eef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.