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Abstract. We prove the strong convergence of the modified Mann-type iterative scheme for
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1. INTRODUCTION

Let E and E∗ be a real Banach space and the dual space of E, respectively. Let Jq
(q > 1) denote the generalized duality mapping from E into 2E

∗
given by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}

for each x ∈ E, where 〈·, ·〉 denotes the duality pairing between E and E∗. It is well
known that Jq(x) = ‖x‖q−2J(x) for all x 6= 0. If E is smooth then Jq is single-valued,
which is denoted by jq. The duality mapping J from a smooth Banach space E into
E∗ is said to be weakly sequentially continuous if xn weak convergent to x implies
Jxn weak∗ convergent to Jx. We denote the fixed point set of a nonlinear mapping
T : C → E by F (T ) = {x ∈ C : Tx = x}.

Definition 1.1. A mapping T with domain D(T ) and range R(T ) in E is called
(i) λ-strictly pseudocontractive [5] if there exists a constant λ > 0 such that

〈Tx− Ty, jq(x− y)〉 ≤ ‖x− y‖q − λ‖(I − T )x− (I − T )y‖q
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for all x, y ∈ D(T ) and for some jq(x− y) ∈ Jq(x− y); or equivalently to

〈(I − T )x− (I − T )y, jq(x− y)〉 ≥ λ‖(I − T )x− (I − T )y‖q;

(ii) L-Lipschitzian if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖

for all x, y ∈ D(T ).

If 0 < L < 1, then T is a contraction and if L = 1, then T is a nonexpansive
mapping. By definition, we see that every λ-strictly pseudocontractive mapping is
( 1+λ
λ )-Lipschitzian (see [10]).

Remark 1.2. Let C be a nonempty subset of a real Hilbert space and T : C → C
be a mapping. Then T is said to be κ-strictly pseudocontractive [5] if there exists
κ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2 (1.1)

for all x, y ∈ D(T ). It is known that (1.1) is equivalent to

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − 1− κ
2
‖(I − T )x− (I − T )y‖2.

In 1953, Mann [18] introduced the following iteration: x1 ∈ C and

xn+1 = αnxn + (1− αn)Txn, n ≥ 1, (1.2)

where {αn} ⊂ (0, 1). It is known as a Mann iteration. If T is a nonexpansive mapping
with a fixed point and the control sequence {αn} is chosen by

∑∞
n=1 αn(1−αn) =∞,

then {xn} generated by (1.2) converges weakly to a fixed point of T (this is also valid
in a uniformly convex Banach space with the Fréchet differentiable norm [23]).

In 1967, Browder-Petryshyn [5] introduced the class of strict pseudocontractions
and proved existence and weak convergence theorems in a real Hilbert setting by
using the Mann iterative algorithm (1.2) with a constant sequence αn = α for all n.
Recently, Marino-Xu [19] and Zhou [34] extended the results of Browder-Petryshyn [5]
to Mann’s iteration process (1.2). Zhou [36] also investigated the weak convergence in
a 2-uniformly smooth Banach space. In a much more general setting, Osilike-Udomene
[21], Zhang-Su [33], Zhang-Guo [32] and Zhou [37] investigated the weak convergence
in a q-uniformly smooth Banach space. Since 1967, the construction of fixed points
for pseudocontractions via the iterative process has been extensively investigated by
many authors (see, e.g., [7–9,22]).

In 1967, Halpern [15] introduced the following iteration which is the so-called
Halpern iteration: x1 ∈ C and

xn+1 = αnu+ (1− αn)Txn, n ≥ 1, (1.3)

where {αn} ⊂ (0, 1) and u ∈ C. It was proved, in a real Hilbert space, the convergence
of {xn} to a fixed point of T , where αn := n−a, a ∈ (0, 1).

In 1977, Lions [17] obtained a strong convergence of (1.3) still in a real Hilbert
space provided the real sequence {αn} satisfies the following conditions:
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(C1) limn→∞ αn = 0,
(C2)

∑∞
n=1 αn =∞,

(C3) limn→∞
αn−αn−1

α2
n

= 0.

Reich [25] extended Halpern’s result to a uniformly smooth Banach space. How-
ever, both Halpern’s and Lions’ conditions imposed on the real sequence {αn} ex-
cluded the canonical choice αn = 1/(n+ 1).

In 1992, Wittmann [27] proved, in a real Hilbert space, that the sequence {xn}
converges strongly to a fixed point of T if {αn} satisfies the following conditions:

(C1) limn→∞ αn = 0,
(C2)

∑∞
n=1 αn =∞,

(C3)
∑∞
n=1 |αn+1 − αn| <∞.

Shioji-Takahshi [26] extended Wittmann’s result to real Banach spaces with uni-
formly Gâteaux differentiable norms and in which each nonempty closed convex and
bounded subset has the fixed point property for nonexpansive mappings. The concept
of a Halpern iterative scheme has been widely used to approximate the fixed points for
nonexpansive mappings (see, e.g., [2,12,16,24,28,29] and the reference cited therein).

In 2009, Yao et al. introduced in [31] a new modified Mann iterative algorithm for
a nonexpansive mapping in a real Hilbert space.

Algorithm 1.3. For given x1 ∈ H, let the sequences {xn} and {yn} be generated
iteratively by

yn = (1− αn)xn,

xn+1 = (1− βn)yn + βnTyn, n ≥ 1.
(1.4)

They proved the following strong convergence theorem for a nonexpansive mapping
in a real Hilbert space.

Theorem 1.4. Let H be a real Hilbert space. Let T : H → H be a nonexpansive
mapping with F (T ) 6= ∅. Let {αn} and {βn} be two sequences in [0, 1]. Assume the
following conditions are satisfied:

(C1)
∑∞
n=1 αn =∞,

(C2) limn→∞ αn = 0,
(C3) βn ∈ [a, b] ⊂ (0, 1).

Then the sequence {xn} and {yn} generated by (1.4) strongly converge to a fixed point
of T .

Motivated and inspired by Marino-Xu [19], Zhang-Su [33], Zhou [34–37] and Yao
et al. [31], we consider the following modified Mann-type iteration: x1 ∈ C and

yn = QC
(
(1− αn)xn

)
,

xn+1 = (1− βn)yn + βnTnyn, n ≥ 1,
(1.5)

where {αn} and {βn} are real sequences in [0, 1] and {Tn}∞n=1 is a countable family of
strict pseudocontractions on a nonempty, closed and convex subset C of a real Banach
space E.
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It is our purpose in this paper to prove a strong convergence of the modified
Mann-type iteration process (1.5) in the framework of q-uniformly smooth Banach
spaces for a countable family of strict pseudocontractions. The obtained results im-
prove and extend those of Yao et al. [31] in several aspects.

We will use the notation:
⇀ for weak convergence and → for strong convergence,
ωω(xn) = {x : xni ⇀ x} denotes the weak ω-limit set of {xn}.

2. PRELIMINARIES

A Banach space E is said to be strictly convex if ‖x+y‖2 < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x 6= y. A Banach space E is called uniformly convex if for each
ε > 0 there is a δ > 0 such that for x, y ∈ E with ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε,
‖x+ y‖ ≤ 2(1− δ) holds. The modulus of convexity of E is defined by

δE(ε) = inf
{

1−
∥∥∥1

2
(x+ y)

∥∥∥ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
,

for all ε ∈ [0, 2]. E is uniformly convex if δE(0) = 0, and δE(ε) > 0 for all 0 < ε ≤ 2. It
is known that every uniformly convex Banach space is strictly convex and reflexive. Let
S(E) = {x ∈ E : ‖x‖ = 1}. Then the norm of E is said to be Gâteaux differentiable if

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S(E). In this case E is called smooth. The norm of E is said
to be Fréchet differentiable if for each x ∈ S(E), the limit is attained uniformly for
y ∈ S(E). The norm of E is called uniformly Fréchet differentiable, if the limit is
attained uniformly for x, y ∈ S(E). It is well known that (uniformly) Fréchet differ-
entiability of the norm of E implies (uniformly) Gâteaux differentiability of the norm
of E.

Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup
{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x ∈ S(E), ‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t → 0. Let q > 1,

then E is said to be q-uniformly smooth if there exists c > 0 such that ρE(t) ≤ ctq. It
is easy to see that if E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth.
It is well known that E is uniformly smooth if and only if the norm of E is uniformly
Fréchet differentiable, and hence the norm of E is Fréchet differentiable. For more
details, we refer the reader to [1, 11].

In 1972, Gossez and Lami [14] gave some geometric properties related to the fixed
point theory for nonexpansive mappings. They proved that a space with a weakly
continuous duality map satisfies Opial’s condition [20]. Conversely, if a space satisfies
Opial’s condition and has a uniformly Gâteaux differentiable norm, then it has a
weakly continuous zero duality map.
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Let E be a real Banach space, C a nonempty, closed and convex subset of E, and
K a nonempty subset of C. Let Q : C → K. Then Q is said to be

– sunny if for each x ∈ C and t ∈ [0, 1], we have

Q
(
tx+ (1− t)Qx

)
= Qx;

– a retraction of C onto K if

Qx = x for each x ∈ K;

– a sunny nonexpansive retraction ifQ is sunny, nonexpansive and retraction ontoK.
See also Bruck [6], Goebel-Reich [13] and Reich [24].

In the sequel, we shall need the following lemmas.

Lemma 2.1 ([30]). Let E be a real q-uniformly smooth Banach space. Then the
following inequality holds:

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ Cq‖y‖q,

for all x, y ∈ E and for some Cq > 0.

Lemma 2.2 ([37]). Let C be a nonempty, closed and convex subset of a q-uniformly
smooth Banach space E. Suppose that the generalized duality mapping Jq : E → E∗ is
weakly sequentially continuous at zero. Let T : C → E be a λ-strict pseudocontraction
with 0 < λ < 1. Then for any {xn} ⊂ C, if xn ⇀ x and ‖xn − Txn‖ → y ∈ E, then
x− Tx = y.

Lemma 2.3 ([29]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that:

(a)
∑∞
n=1 γn =∞,

(b) lim supn→∞ δn ≤ 0 or
∑∞
n=1 |γnδn| <∞.

Then limn→∞ an = 0.

To deal with a family of mappings, the following conditions are introduced: Let
C be a subset of a real Banach space E and let {Tn}∞n=1 be a family of mappings of
C such that

⋂∞
n=1 F (Tn) 6= ∅. Then {Tn} is said to satisfy the AKTT-condition [2] if

for each bounded subset B of C,

∞∑
n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} <∞.
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Lemma 2.4 ([2]). Let C be a nonempty and closed subset of a Banach space E and
let {Tn} be a family of mappings of C into itself which satisfies the AKTT-condition,
then the mapping T : C → C defined by

Tx = lim
n→∞

Tnx for each x ∈ K

satisfies
lim sup
n→∞

{‖Tz − Tnz‖ : z ∈ B} = 0

for each bounded subset B of C.

The following results can be found in [3, 4].

Lemma 2.5 ([3, 4]). Let C be a closed and convex subset of a smooth Banach space
E. Suppose that {Tn}∞n=1 is a family of λ-strictly pseudocontractive mappings from
C into E with

⋂∞
n=1 F (Tn) 6= ∅ and {µn}∞n=1 is a real sequence in (0, 1) such that∑∞

n=1 µn = 1. Then the following conclusions hold:

(1) G :=
∑∞
n=1 µnTn : C → E is a λ-strictly pseudocontractive mapping,

(2) F (G) =
⋂∞
n=1 F (Tn).

Lemma 2.6 ([4]). Let C be a closed and convex subset of a smooth Banach space E.
Suppose that {Sk}∞k=1 is a countable family of λ-strictly pseudocontractive mappings
of C into itself with

⋂∞
k=1 F (Sk) 6= ∅. For each n ∈ N, define Tn : C → C by

Tnx =

n∑
k=1

µknSkx, x ∈ C,

where {µkn} is a family of nonnegative numbers satisfying:

(i)
∑n
k=1 µ

k
n = 1 for all n ∈ N,

(ii) µk := limn→∞ µkn > 0 for all k ∈ N,
(iii)

∑∞
n=1

∑n
k=1 |µkn+1 − µkn| <∞.

Then:

(1) Each Tn is a λ-strictly pseudocontractive mapping.
(2) {Tn} satisfies AKTT-condition.
(3) If T : C → C is defined by

Tx =

∞∑
k=1

µkSkx, x ∈ C,

then Tx = limn→∞ Tnx and F (T ) =
⋂∞
n=1 F (Tn) =

⋂∞
k=1 F (Sk).

In what follows, we will write ({Tn}, T ) satisfies the AKTT-condition if {Tn} sat-
isfies the AKTT-condition and T is defined by Lemma 2.4 with F (T ) =

⋂∞
n=1 F (Tn).
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3. MAIN RESULTS

Theorem 3.1. Let E be a real q-uniformly smooth Banach space which satisfies
Opial’s condition and C a nonempty, closed and convex subset of E. Let QC be a
sunny nonexpansive retraction from E onto C. Let {Tn}∞n=1 : C → C be a family of
λ-strict pseudocontractions (0 < λ < 1) such that F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume

that real sequences {αn} and {βn} in (0, 1) satisfy the following conditions:

(C1)
∑∞
n=1 αn =∞,

(C2) limn→∞ αn = 0,
(C3) 0 < a ≤ βn ≤ µ, µ = min

{
1, ( qλCq

)
1

q−1
}
.

Suppose that ({Tn}, T ) satisfies the AKTT-condition. Then the sequences {xn} and
{yn} generated by (1.5) converge strongly to a common fixed point of {Tn}∞n=1.

Proof. First, we prove that {xn} is bounded. For each p ∈ F , it follows from
Lemma 2.1 that

‖xn+1 − p‖q = ‖(yn − p) + βn(Tnyn − yn)‖q ≤

≤ ‖yn − p‖q + qβn〈Tnyn − yn, jq(yn − p)〉+ Cqβ
q
n‖yn − Tnyn‖q ≤

≤ ‖yn − p‖q − qλβn‖yn − Tnyn‖q + Cqβ
q
n‖yn − Tnyn‖q =

= ‖yn − p‖q − βn(qλ− Cqβq−1n )‖yn − Tnyn‖q.

(3.1)

This implies by (C3) that

‖xn+1 − p‖ ≤ ‖yn − p‖ = ‖QC
(
(1− αn)xn

)
−QCp‖ ≤ ‖(1− αn)xn − p‖ ≤

≤ (1− αn)‖xn − p‖+ αn‖p‖ ≤ max{‖xn − p‖, ‖p‖}.
(3.2)

By induction, we get that {xn} is bounded, so is {yn}. Observing

‖yn − Tnyn‖ =
1

βn
‖yn − xn+1‖, (3.3)

we have from (3.1) that

‖xn+1 − p‖q ≤ ‖yn − p‖q − βn(qλ− Cqβq−1n )‖yn − Tnyn‖q =

= ‖yn − p‖q − (qλβ1−q
n − Cq)‖yn − xn+1‖q ≤

≤ ‖xn − p− αnxn‖q − (qλµ1−q − Cq)‖yn − xn+1‖q ≤
≤ ‖xn − p‖q − qαn〈xn, jq(xn − p)〉+ Cqα

q
n‖xn‖q−

− (qλµ1−q − Cq)‖yn − xn+1‖q.

(3.4)

Since {xn} is bounded, there exists a constant M ≥ 0 such that

‖xn+1 − p‖q − ‖xn − p‖q + k‖yn − xn+1‖q ≤Mαn, (3.5)
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where k = qλµ1−q − Cq.
To this end, we divide the proof into two cases.

Case 1. Assume that the sequence {‖xn − p‖}∞n=1 is monotone decreasing. Then
{‖xn − p‖}∞n=1 is convergent for all p ∈ F . So from (3.5) and (C2) we get that

lim
n→∞

‖yn − xn+1‖ = 0. (3.6)

Combining (3.3) and (3.6), it follows from (C3) that

lim
n→∞

‖yn − Tnyn‖ = 0. (3.7)

On the other hand, we see that

‖yn − xn‖ = ‖QC
(
(1− αn)xn

)
−QCxn‖ ≤

≤ ‖(1− αn)xn − xn‖ = αn‖xn‖ → 0,
(3.8)

as n→∞. Hence

‖xn − Tnxn‖ ≤ ‖xn − yn‖+ ‖yn − Tnyn‖+ ‖Tnyn − Tnxn‖ ≤

≤
(

1 +
1 + λ

λ

)
‖xn − yn‖+ ‖yn − Tnyn‖.

From (3.7) and (3.8) we obtain that

lim
n→∞

‖xn − Tnxn‖ = 0. (3.9)

Since ({Tn}, T ) satisfies the AKTT-condition, it follows from Lemma 2.4 and (3.9)
that

‖xn − Txn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Txn‖ ≤
≤ ‖xn − Tnxn‖+ sup

z∈{xn}
‖Tnz − Tz‖ → 0,

as n→∞. Note that E satisfies Opial’s condition. Since E is q-uniformly smooth, the
norm of E is uniformly Fréchet differentiable and hence the norm of E is uniformly
Gâteaux differentiable. By Gossez and Dozo [14], we know that jq is weakly sequen-
tially continuous at zero. So by Lemma 2.2 we get that ωω(xn) ⊂ F (T ) = F . Opial’s
condition ensures that ωω(xn) is a singleton. Without lost of generality, we assume
that xn ⇀ x∗ ∈ F .
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Next, we prove that xn → x∗ ∈ F . From (3.2) we see that

‖xn+1 − x∗‖q ≤ ‖yn − x∗‖q ≤ ‖(1− αn)(xn − x∗)− αnx∗‖q ≤
≤ (1− αn)q‖xn − x∗‖q + Cqα

q
n‖x∗‖q−

− qαn
〈
x∗, jq

(
(1− αn)(xn − x∗)

)〉
=

= (1− αn)q‖xn − x∗‖q + Cqα
q
n‖x∗‖q−

− qαn‖(1− αn)(xn − x∗)‖q−2
〈
x∗, j

(
(1− αn)(xn − x∗)

)〉
=

= (1− αn)q‖xn − x∗‖q + Cqα
q
n‖x∗‖q−

− qαn(1− αn)q−1‖xn − x∗‖q−2
〈
x∗, j(xn − x∗)

〉
=

= (1− αn)q‖xn − x∗‖q + Cqα
q
n‖x∗‖q−

− qαn(1− αn)q−1
〈
x∗, jq(xn − x∗)

〉
≤

≤ (1− αn)‖xn − x∗‖q+

+ αn

(
Cqα

q−1
n ‖x∗‖q − q(1− αn)q−1

〈
x∗, jq(xn − x∗)

〉)
=

= (1− αn)‖xn − x∗‖q + αnδn,

(3.10)

where
δn = Cqα

q−1
n ‖x∗‖q − q(1− αn)q−1

〈
x∗, jq(xn − x∗)

〉
.

It is easy to see that δn → 0 as n→∞. By Lemma 2.3, we conclude that xn → x∗ as
n→∞ and hence yn → x∗ as n→∞.
Case 2. Assume that {‖xn − p‖}∞n=1 is not monotone decreasing. Set Γpn = ‖xn − p‖q
for each p ∈ F and n ∈ N, and let τ : N → N be a mapping for all n ≥ n0 (for some
n0 large enough) by

τ(n) = max{k ∈ N : k ≤ n, Γpk ≤ Γpk+1}.

Clearly τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and
Γpτ(n) ≤ Γpτ(n)+1 for n ≥ n0 and p ∈ F . From (3.5) we see that

‖yτ(n) − xτ(n)+1‖q ≤
Mατ(n)

k
→ 0,

as n→∞. Hence
lim
n→∞

‖yτ(n) − xτ(n)+1‖ = 0.

By the same argument as the proof in Case 1, we conclude that xτ(n) ⇀ x∗ ∈ F as
τ(n)→∞. From (3.10), we see that, for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − x∗‖q − ‖xτ(n) − x∗‖q ≤

≤ ατ(n)
(
Cqα

q−1
τ(n)‖x

∗‖q − q(1− ατ(n))q−1
〈
x∗, jq(xτ(n) − x∗)

〉
− ‖xτ(n) − x∗‖q

)
.

This implies that

‖xτ(n) − x∗‖q ≤ Cqαq−1τ(n)‖x
∗‖q − q(1− ατ(n))q−1

〈
x∗, jq(xτ(n) − x∗)

〉
.
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Hence
lim
n→∞

‖xτ(n) − x∗‖ = 0.

Therefore,
lim
n→∞

Γx
∗

τ(n) = lim
n→∞

Γx
∗

τ(n)+1 = 0.

Moreover, for n ≥ n0, we see that Γx
∗

n ≤ Γx
∗

τ(n)+1 if n 6= τ(n) (that is, τ(n) < n),
because Γx

∗

j > Γx
∗

j+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ Γx
∗

n ≤ max{Γx
∗

τ(n), Γx
∗

τ(n)+1} = Γx
∗

τ(n)+1.

It follows that limn→∞ Γx
∗

n = 0 and hence xn → x∗ and yn → x∗ as n → ∞. This
completes the proof.

As a direct consequence of Lemma 2.5, Lemma 2.6 and Theorem 3.1, we obtain
the following result.

Theorem 3.2. Let E be a real q-uniformly smooth Banach space which satisfies
Opial’s condition and C a nonempty, closed and convex subset of E. Let QC be a
sunny nonexpansive retraction from E onto C. Let {Sk}∞k=1 be a sequence of λk-strict
pseudocontractions of C into itself such that

⋂∞
k=1 F (Sk) 6= ∅ and inf{λk : k ∈ N} =

λ > 0. Define the sequence {xn} by x1 ∈ C,

yn = QC
(
(1− αn)xn

)
,

xn+1 = (1− βn)yn + βn

n∑
k=1

µknSkyn, n ≥ 1,

where {αn} and {βn} are real sequences in (0, 1) satisfying (C1)-(C3) of Theorem 3.1
and {µkn} is a real sequence satisfying (i)-(iii) of Lemma 2.6. Then {xn} and {yn}
converge strongly to a common fixed point of {Sk}∞k=1.

Remark 3.3. Since every Hilbert space is a q-uniformly smooth Banach space and
satisfies Opial’s condition, Theorems 3.1 and 3.2 hold in real Hilbert spaces.

Remark 3.4. Theorems 3.1 and 3.2 extend and improve the main result of Yao et
al. [31] in the following senses:

(i) from real Hilbert spaces to real q-uniformly smooth Banach spaces which satisfy
Opial’s condition,

(ii) from a nonexpansive mapping to an infinitely countable family of strict pseudo-
contractions.
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