PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Floating Photovoltaics: Assessing the Potential, Advantages, and Challenges of Harnessing Solar Energy on Water Bodies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The worldwide transition to a future with net-zero emissions depends heavily on solar energy. However, when land prices rise, and population density rises, the need for large land expanses to develop solar farms poses difficulties. Floating Photovoltaics (FPV) has come to light as a viable remedy to this problem. FPV, which includes mounting solar panels on bodies of water, is gaining popularity as a practical choice in many nations worldwide. A significant capacity of 404 GWp for producing clean energy might be attained by using FPV to cover only 1% of the world’s reservoirs. This review shows that FPV has several benefits over conventional ground-mounted PV systems. On the other hand, there is a large study void regarding the effects of FPV on water quality and aquatic ecosystems. This review looks at the most recent FPV research, including its advantages, disadvantages, and potential. It looks into the compatibility of various bodies of water, worldwide potential, system effectiveness, and the possibility of integrating different technologies with FPV.
Słowa kluczowe
Rocznik
Strony
324--339
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
  • Faculty of Engineering, Zarqa University, Jordan
autor
  • Faculty of Engineering, Zarqa University, Jordan
autor
  • Renewable Energy Engineering Department, Middle East University, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, Tafila, Jordan
  • Renewable Energy Technology, Applied Science Private University, Amman, Jordan
autor
  • Department of Electrical and Electronics Engineering, Istanbul Nisantasi University, Istanbul, Turkey
autor
  • Department of Mechanical Engineering, Tafila Technical University, Tafila, Jordan
  • Department of Industrial and Systems Engineering, Auburn University, Auburn, USA
autor
  • Faculty of Engineering, Zarqa University, Jordan
  • Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
  • Faculty of Engineering, Zarqa University, Jordan
  • 8 School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
Bibliografia
  • 1. Abbasnia, A. et al. 2022. Wind parameters effects on floating solar array design – case study: Japan’s largest floating solar array. InL Proc. of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 8. Available at: https://doi.org/10.1115/OMAE2022-78762.
  • 2. Abdelal, Q. 2021. Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions. International Journal of Low-Carbon Technologies. 16(3), 732–739. Available at: https://doi.org/10.1093/IJLCT/CTAB001.
  • 3. Abdurohman, K. and Adhitya, M. 2019. Effect of water and seawater on mechanical properties of fiber reinforced polymer composites: a review for amphibious aircraft float development. IOP Conference Series: Materials Science and Engineering, 694(1), 012035. Available at: https://doi.org/10.1088/1757-899X/694/1/012035.
  • 4. Abid, M. et al. 2019. Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries. International Journal of Environmental Science and Technology, 16(3), 1755–1762. Available at: https://doi.org/10.1007/S13762-018-2080-5/METRICS.
  • 5. Al-Widyan, M., Khasawneh, M. and Abu-Dalo, M. 2021. Potential of floating photovoltaic technology and their effects on energy output, water quality and supply in Jordan. Energies, 14(24), 8417. Available at: https://doi.org/10.3390/EN14248417.
  • 6. Azni, M.A. et al. 2023. Review of the effects of fossil fuels and the need for a hydrogen fuel cell policy in Malaysia. Sustainability, 15(5), 4033. Available at: https://doi.org/10.3390/SU15054033.
  • 7. Banik, A. and Sengupta, A. 2021. Scope, challenges, opportunities and future goal assessment of floating solar park. Innovations in Energy Management and Renewable Resources, IEMRE 2021 [Preprint]. Available at: https://doi.org/10.1109/IEMRE52042.2021.9386735.
  • 8. Cazzaniga, R. et al. 2019. Integration of PV floating with hydroelectric power plants. Available at: https://doi.org/10.1016/j.heliyon.2019.e01918.
  • 9. Cazzaniga, R. 2020. Floating PV Structures. Floating PV Plants, 33–45. Available at: https://doi.org/10.1016/B978-0-12-817061-8.00004-X.
  • 10. Cazzaniga, R. and Rosa-Clot, M. 2021. The booming of floating PV. Solar Energy, 219, 3–10. Available at: https://doi.org/10.1016/J.SOLENER.2020.09.057.
  • 11. Claus, R. and López, M. 2022. Key issues in the design of floating photovoltaic structures for the marine environment. Renewable and Sustainable Energy Reviews, 164, 112502. Available at: https://doi.org/10.1016/J.RSER.2022.112502.
  • 12. Cuce, E. et al. 2022. Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges. Sustainability, 14(5), 2626. Available at: https://doi.org/10.3390/SU14052626.
  • 13. Donaghy, T.Q. et al. 2023. Fossil fuel racism in the United States: How phasing out coal, oil, and gas can protect communities. Energy Research & Social Science, 100, 103104. Available at: https://doi.org/10.1016/J.ERSS.2023.103104.
  • 14. Dwivedi, P. et al. 2020. Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21, 100674. Available at: https://doi.org/10.1016/J.CSITE.2020.100674.
  • 15. Edwards, E.C. et al. 2023. Evolution of floating off-shore wind platforms: A review of at-sea devices. Renewable and Sustainable Energy Reviews, 183, 113416. Available at: https://doi.org/10.1016/J.RSER.2023.113416.
  • 16. Enaganti, P.K. et al. 2022. Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems. Energy, 239, 122213. Available at: https://doi.org/10.1016/J.ENERGY.2021.122213.
  • 17. Essak, L. and Ghosh, A. 2022. Floating Photovoltaics: A Review. Clean Technologies, 4(3), 752–769. Available at: https://doi.org/10.3390/CLEANTECHNOL4030046.
  • 18. Exley, G. et al. 2021a. Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy, 219, 24–33. Available at: https://doi.org/10.1016/J.SOLENER.2021.01.076.
  • 19. Exley, G. et al. 2021b. Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability. Renewable and Sustainable Energy Reviews, 152, 111639. Available at: https://doi.org/10.1016/J.RSER.2021.111639.
  • 20. Farrar, L.W. et al. 2022. Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan. Energy Conversion and Management, 260, 115598. Available at: https://doi.org/10.1016/J.ENCONMAN.2022.115598.
  • 21. Fereshtehpour, M. et al. 2021. Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures. Renewable Energy, 171, 1171–1187. Available at: https://doi.org/10.1016/J.RENENE.2020.12.005.
  • 22. Gadzanku, S. et al. 2021a. Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus. Sustainability, 13(8), 4317. Available at: https://doi.org/10.3390/SU13084317.
  • 23. Gadzanku, S., Beshilas, L. and Grunwald, U. 2021b. Enabling Floating Solar Photovoltaic (FPV) Deployment: Review of Barriers to FPV Deployment in Southeast Asia. Available at: https://doi.org/10.2172/1787553.
  • 24. Ghosh, A. 2023. A comprehensive review of water based PV: Flotavoltaics, under water, off-shore & canal top. Ocean Engineering, 281, 115044. Available at: https://doi.org/10.1016/J.OCEANENG.2023.115044.
  • 25. Goswami, A. et al. 2019. Floating solar power plant for sustainable development: A techno-economic analysis. Environmental Progress & Sustainable Energy, 38(6), e13268. Available at: https://doi.org/10.1002/EP.13268.
  • 26. Grant, N.E. et al. 2020. Lifetime instabilities in gallium doped monocrystalline PERC silicon solar cells. Solar Energy Materials and Solar Cells, 206, 110299. Available at: https://doi.org/10.1016/J.SOLMAT.2019.110299.
  • 27. Haas, J. et al. 2020. Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206, 112414. Available at: https://doi.org/10.1016/J.ENCONMAN.2019.112414.
  • 28. Jiang, Z. et al. 2023. Design and model test of a soft-connected lattice-structured floating solar photovoltaic concept for harsh offshore conditions. Marine Structures, 90, 103426. Available at: https://doi.org/10.1016/J.MARSTRUC.2023.103426.
  • 29. Jin, Y. et al. 2023. Energy production and water savings from floating solar photovoltaics on global reservoirs. Nature Sustainability, 6(7), 865–874. Available at: https://doi.org/10.1038/s41893-023-01089-6.
  • 30. Kaliyannan, G.V. et al. 2023. Thin-Film Solar Cells. Fundamentals of Solar Cell Design, 103–115. Available at: https://doi.org/10.1002/9781119725022.CH4.
  • 31. Kaplanis, S., Kaplani, E. and Kaldellis, J.K. 2023. PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions. Energies, 16(12), 4756. Available at: https://doi.org/10.3390/EN16124756.
  • 32. Kaymak, M.K. and Şahin, A.D. 2021. Problems encountered with floating photovoltaic systems under real conditions: A new FPV concept and novel solutions. Sustainable Energy Technologies and Assessments, 47, 101504. Available at: https://doi.org/10.1016/J.SETA.2021.101504.
  • 33. Kazem, H.A. et al. 2020. A review of dust accumulation and cleaning methods for solar photovoltaic systems. Journal of Cleaner Production, 276, 123187. Available at: https://doi.org/10.1016/J.JCLEPRO.2020.123187.
  • 34. Kumar, M., Mohammed Niyaz, H. and Gupta, R. 2021. Challenges and opportunities towards the development of floating photovoltaic systems. Solar Energy Materials and Solar Cells, 233, 111408. Available at: https://doi.org/10.1016/J.SOLMAT.2021.111408.
  • 35. Lee, N. et al. 2020. Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415–1427. Available at: https://doi.org/10.1016/J.RENENE.2020.08.080.
  • 36. Li, M. et al. 2022. State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia. Renewable and Sustainable Energy Reviews, 162, 112404. Available at: https://doi.org/10.1016/J.RSER.2022.112404.
  • 37. Liang, Y., Kleijn, R. and van der Voet, E. 2023. Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario. Applied Energy, 346, 121400. Available at: https://doi.org/10.1016/J.APENERGY.2023.121400.
  • 38. Lima, M.A. et al. 2020. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environmental Development, 33, 100504. Available at: https://doi.org/10.1016/J.ENVDEV.2020.100504.
  • 39. Luo, W. et al. 2021. Performance loss rates of floating photovoltaic installations in the tropics. Solar Energy, 219, 58–64. Available at: https://doi.org/10.1016/J.SOLENER.2020.12.019.
  • 40. Makahleh, F.M. et al. 2023. Optimal Management of Energy Storage Systems for Peak Shaving in a Smart Grid. Computers, Materials & Continua, 75(2), 3317–3337. Available at: https://doi.org/10.32604/CMC.2023.035690.
  • 41. Mayville, P., Patil, N.V. and Pearce, J.M. 2020. Distributed manufacturing of after market flexible floating photovoltaic modules. Sustainable Energy Technologies and Assessments, 42, 100830. Available at: https://doi.org/10.1016/J.SETA.2020.100830.
  • 42. Micheli, L. 2022. The temperature of floating photovoltaics: Case studies, models and recent findings. Solar Energy, 242, 234–245. Available at: https://doi.org/10.1016/J.SOLENER.2022.06.039.
  • 43. Muhammad, S. et al. 2023. Application of Dynamic Programming for Optimal Hybrid Energy Management System: Hydro-Photovoltaic-Diesel-BESS. IEEE Access [Preprint]. Available at: https://doi.org/10.1109/ACCESS.2023.3296699.
  • 44. Muñoz-Cerón, E. et al. 2023. Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis. Energy, 271, 127039. Available at: https://doi.org/10.1016/J.ENERGY.2023.127039.
  • 45. Nagananthini, R. and Nagavinothini, R. 2021. Investigation on floating photovoltaic covering system in rural Indian reservoir to minimize evaporation loss. 40(8), 781–805. Available at: https://doi.org/10.1080/14786451.2020.1870975.
  • 46. Natarajan, S.K. et al. 2019. Design and development of dual axis sun tracking system for floating PV plant. IOP Conference Series: Earth and Environmental Science, 312(1), 012001. Available at: https://doi.org/10.1088/1755-1315/312/1/012001.
  • 47. Ndumnu, N. et al. (no date) Floating PV Technology and its Possible Applications. Available at: https://www.researchgate.net/publication/344714482 (Accessed: 27 July 2023).
  • 48. Nisar, H. et al. 2022. Thermal and electrical performance of solar floating PV system compared to on-ground PV system-an experimental investigation. Solar Energy, 241, 231–247. Available at: https://doi.org/10.1016/J.SOLENER.2022.05.062.
  • 49. Patil, A., Mamatha, G. and Kulkarni, P.S. 2022. Techno-Economic Analysis of proposed 10 kWp Floating Solar Plant at Koyana Dam, Maharashtra, India. In: Proc. of the 2nd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control, PARC 2022 [Preprint]. Available at: https://doi.org/10.1109/PARC52418.2022.9726247.
  • 50. Piana, V. et al. 2021. Floating PV in mountain artificial lakes: a checklist for site assessment. Renewable Energy and Environmental Sustainability, 6, 4. Available at: https://doi.org/10.1051/REES/2021002.
  • 51. Qureshi, O.A. et al. 2023. Thermal or photovoltaic rear sides? A parametric comparison between photovoltaic thermal and bifacial technology. Energy Conversion and Management, 289, 117134. Available at: https://doi.org/10.1016/J.ENCONMAN.2023.117134.
  • 52. Rauf, A. et al. 2023. The current developments and future prospects of solar photovoltaic industry in an emerging economy of India. Environmental Science and Pollution Research, 30(16), 46270–46281. Available at: https://doi.org/10.1007/S11356-023-25471-1/METRICS.
  • 53. Refaai, M.R.A. et al. 2022. Design and Implementation of a Floating PV Model to Analyse the Power Generation. International Journal of Photoenergy, 2022. Available at: https://doi.org/10.1155/2022/3891881.
  • 54. Rosa-Clot, M. and Tina, G.M. 2020. Current Status of FPV and Trends. Floating PV Plants, 9–18. Available at: https://doi.org/10.1016/B978-0-12-817061-8.00002-6.
  • 55. Rosa-Clot, P. 2020. FPV and Environmental Compatibility. Floating PV Plants, pp. 101–118. Available at: https://doi.org/10.1016/B978-0-12-817061-8.00009-9.
  • 56. Schreier, S. et al. 2022. Committee V.6: Ocean Space Utilization. In: Proc. of the 21st International Ship and Offshore Structures Congress, ISSC 2022, 2, 379–444. Available at: https://doi.org/10.5957/ISSC-2022-COMMITTEE-V-6.
  • 57. Solar Energy Institute of Singapore, 2018. Where Sun Meets Water: Floating Solar Market Report. Washington.
  • 58. Solomin, E. et al. 2021. Hybrid floating solar plant designs: A review. Energies, 14(10), 2751. Available at: https://doi.org/10.3390/EN14102751.
  • 59. Vartiainen, E. et al. 2020. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications, 28(6), 439–453. Available at: https://doi.org/10.1002/PIP.3189.
  • 60. Vidović, V. et al. 2023. Review of the potentials for implementation of floating solar panels on lakes and water reservoirs. Renewable and Sustainable Energy Reviews, 178, 113237. Available at: https://doi.org/10.1016/J.RSER.2023.113237.
  • 61. Vo, T.T.E. et al. 2021. Overview of possibilities of solar floating photovoltaic systems in the offshore industry. Energies, 14(21), 6988. Available at: https://doi.org/10.3390/EN14216988.
  • 62. Wijewardane, S. and Kazmerski, L.L. 2023. Inventions, innovations, and new technologies: Flexible and lightweight thin-film solar PV based on CIGS, CdTe, and a-Si:H. Solar Compass, 7, 100053. Available at: https://doi.org/10.1016/J.SOLCOM.2023.100053.
  • 63. Yang, P. et al. 2022. Impacts of a floating photovoltaic system on temperature and water quality in a shallow tropical reservoir. Limnology, 23(3), 441–454. Available at: https://doi.org/10.1007/S10201-022-00698-Y/FIGURES/10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32512752-54e5-4761-854f-ce8aa3ff7259
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.