Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Understanding the microstructural and mechanical behavior of the friction stir welded magnesium matrix composites is necessary for different applications in automobile and aerospace components such as fuel tanks, steering wheels, chassis, seat frames, etc. In the present study, friction stir welding of magnesium RZ5/8 wt% TiB2 metal matrix composites is carried out at different joining conditions. FESEM micrograph showed the refined equiaxed grains in the nugget zone and elongated grains in the thermo-mechanically affected zone. Better grain refinement with uniform distribution is achieved at the tool rotational speed of 931 rpm and traverse speed of 20 mm/min. During the joining of RZ5/8 wt% TiB2 composites, the maximum temperature measured in the nugget zone is 511 °C at the rotational tool speed of 1216 rpm and traverse speed of 20 mm/min. Hardness is maximum at the nugget zone, which is 30% higher than the base material. The heat-affected zone showed the lowest hardness due to the annealing induced grain growth. Tensile strength is maximum during the joining of the RZ5/8 wt% TiB2 composites at a tool rotational speed of 931 rpm because of the better grain refinement with uniform reinforcement distribution in the weld zone. The tensile residual stress is observed to be a maximum of 71.41 MPa at a depth of 2.5 mm from the top surface and compressive residual stress of 60.98 MPa at the bottom surface of the nugget zone. The residual stress increased with an increase in tool rotational speed due to the increase in shrinkage of the materials at the higher temperature.
Czasopismo
Rocznik
Tom
Strony
art. no. e178, 2022
Opis fizyczny
Bibliogr. 36 poz., fot., rys., wykr.
Twórcy
autor
- School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
- Department of Mechanical Engineering and University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
autor
- School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
Bibliografia
- [1] Luo AA. Magnesium casting technology for structural applications. J Magnes Alloy. 2013;1:2–22. https://doi.org/10.1016/j.jma.2013.02.002.
- [2] Rahmany-Gorji R, Alizadeh A, Jafari H. Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites. Mater Sci Eng A. 2016;674:413–8. https://doi.org/10.1016/j.msea.2016.07.057.
- [3] Shen MJ, Wang XJ, Ying T, Wu K, Song WJ. Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles. J Alloys Compd. 2016;686:831–40. https://doi.org/10.1016/j.jallcom.2016.06.232.
- [4] Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R Rep. 2000;29:49–113. https:// doi. org/ 10. 1016/ S0927- 796X(00)00024-3.
- [5] Samal P, Vundavilli PR, Meher A, Mahapatra MM. Reinforcing effect of multi-walled carbon nanotubes on microstructure and mechanical behavior of AA5052 composites assisted by in-situ TiC particles. Ceram Int. 2021. https://doi.org/10.1016/j.ceramint.2021.12.029.
- [6] Meher A, Mahapatra MM, Samal P, Vundavilli PR. Abrasive wear behaviour of TiB 2 reinforced in-situ synthesized magnesium RZ5 alloy based metal matrix composites. Met Mater Int. 2020;27:3652–65. https://doi.org/10.1007/s12540-020-00746-1.
- [7] Xiao P, Gao Y, Xu F, Yang C, Li Y, Liu Z, Zheng Q. Tribological behavior of in-situ nanosized TiB 2 particles reinforced AZ91 matrix composite. Tribol Int. 2018;128:130–9. https://doi.org/10.1016/j.triboint.2018.07.003.
- [8] Tan J, Ramakrishna S. Applications of magnesium and its alloys: a review. Appl Sci. 2021. https://doi.org/10.3390/app11156861.
- [9] Ma Z, Shang Q, Ni D, Xiao B. Friction stir welding of magnesium alloys: a review. Sawston: Woodhead Publishing Limited; 2018. https://doi.org/10.11900/0412.1961.2018.00392.
- [10] Singh K, Singh G, Singh H. Review on friction stir welding of magnesium alloys. J Magnes Alloy. 2018;6:399–416. https://doi.org/10.1016/j.jma.2018.06.001.
- [11] Liu L. Welding and joining of magnesium alloys. Sawston: Wood-head Publishing Limited; 2010.
- [12] Mishra RS, De PS, Kumar N. Friction stir Welding and and processing. 2011. https://doi.org/10.1007/978-3-319-07043-8.
- [13] Kaushik P, Dwivedi DK. Effect of tool geometry in dissimilar Al-Steel Friction Stir Welding. J Manuf Process. 2021;68:198–208. https://doi.org/10.1016/j.jmapro.2020.08.007.
- [14] Elangovan K, Balasubramanian V, Babu S. Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model. Mater Des. 2009;30:188–93. https://doi.org/10.1016/j.matdes.2008.04.037.
- [15] Vijay SJ, Murugan N. Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10wt.%TiB2 metal matrix composite. Mater Des. 2010;31:3585–9. https://doi.org/10.1016/j.matdes.2010.01.018.
- [16] Lohwasser D, Chen Z. Friction stir welding. Sawston: Woodhead Publishing Limited; 2009.
- [17] Bahrami M, Besharati Givi MK, Dehghani K, Parvin N. On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater Des. 2014;53:519–27. https://doi.org/10.1016/j.matdes.2013.07.049.
- [18] Salih OS, Ou H, Wei X, Sun W. Microstructure and mechanical properties of friction stir welded AA6092/SiC metal matrix composite. Mater Sci Eng A. 2019;742:78–88. https://doi.org/10.1016/j.msea.2018.10.116.
- [19] Xunhong W, Kuaishe W. Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy. Mater Sci Eng A. 2006;431:114–7. https://doi.org/10.1016/j.msea.2006.05.128.
- [20] Singh K, Singh G, Singh H. Microstructure and mechanical behaviour of friction-stir-welded magnesium alloys: As-Welded and post weld heat treated. Mater Today Commun. 2019;20:100600. https://doi.org/10.1016/j.mtcomm.2019.100600.
- [21] Chen XG, da Silva M, Gougeon P, St-Georges L. Microstructure and mechanical properties of friction stir welded AA6063-B4 C metal matrix composites. Mater Sci Eng A. 2009;518:174–84. https://doi.org/10.1016/j.msea.2009.04.052.
- [22] Razal Rose A, Manisekar K, Balasubramanian V. Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy. Trans Nonferrous Met Soc China English Ed. 2011;21:974–84. https:// doi. org/ 10. 1016/S1003-6326(11)60809-1.
- [23] Lambiase F, Paoletti A, Di Ilio A. Forces and temperature variation during friction stir welding of aluminum alloy AA6082-T6. Int J Adv Manuf Technol. 2018;99:337–46. https://doi.org/10.1007/s00170-018-2524-6.
- [24] Abdollahzadeh A, Shokuhfar A, Omidvar H, Cabrera JM, Solonin A, Ostovari A, Abbasi M. Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proc Inst Mech Eng Part L J Mater Des Appl. 2019;233:831–41. https://doi.org/10.1177/1464420717708485.
- [25] Meher A, Mahapatra MM, Samal P, Vundavilli PR. Study on effect of TiB 2 reinforcement on the microstructural and mechanical properties of magnesium RZ5 alloy based metal matrix composites. J Magnes Alloy. 2020;8:780–92. https://doi.org/10.1016/j.jma.2020.04.003.
- [26] ASTM (2012) Standard Practice for Heat Treatment of magnesium Alloys, ASTM Stand. B661-12, pp 1–7. https://doi.org/10.1520/B0661-12.2.
- [27] Lamet, et al. ASM hand book—metallography and microstructure. Met Finish. 1992. https://doi.org/10.1016/S0026-0576(03)90166-8.
- [28] Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Effects of groove configuration and buttering layer on the through-thickness residual stress distribution in dissimilar welds. Int J Press Vessel Pip. 2021;192: 104392. https://doi.org/10.1016/j.ijpvp.2021.104392.
- [29] Taraphdar PK, Kumar R, Giri A, Pandey C, Mahapatra MM, Sridhar K. Residual stress distribution in thick double-V butt welds with varying groove configuration, restraints and mechanical tensioning. J Manuf Process. 2021;68:1405–17. https://doi.org/10.1016/j.jmapro.2021.06.046.
- [30] Sujith SV, Mulik RS. Thermal history analysis and structure-property validation of friction stir welded Al-7079-TiC in-situ metal matrix composites. J Alloys Compd. 2020;812:152–131.https://doi.org/10.1016/j.jallcom.2019.152131.
- [31] Seidel TU, Reynolds AP. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A Phys Metall Mater Sci. 2001;32:2879–84.https://doi.org/10.1007/s11661-001-1038-1.
- [32] Azizieh M, Kokabi AH, Abachi P. The hardness values depends on the various factor such as heat input, dislocation density, and grain size of the materials. Mater Des. 2011;32:2034–41. https://doi.org/10.1016/j.matdes.2010.11.055.
- [33] Wang G, Yan Z, Zhang H, Zhang X, Liu F, Wang X, Su Y. Improved properties of friction stir-welded AZ31 magnesium alloy by post-weld heat treatment. Mater Sci Technol (United Kingdom). 2017;33:854–63. https://doi.org/10.1080/02670836.2016.1243356.
- [34] Lee KJ, Kim SH. Effect of Residual Stress on the Mechanical Properties of FSW Joints with SUS409L. Adv Mater Sci Eng. 2018. https://doi.org/10.1155/2018/9890234.
- [35] Parikh VK, Badgujar AD, Ghetiya ND. Joining of metal matrix composites using friction stir welding: a review. Mater Manuf Process. 2019;34:123–46. https://doi.org/10.1080/10426914.2018.1532094.
- [36] Shah PH, Badheka VJ. Friction stir welding of aluminium alloys: an overview of experimental findings—process, variables, development and applications. Proc Inst Mech Eng Part L J Mater Des Appl. 2019. https://doi.org/10.1177/1464420716689588.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-324f7d89-281a-43b7-bef7-4296b3312e9c