Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Investigating dolomite fragments derived from pre-existing dolomite-containing sediments or rocks, that is detrital dolomites, constitutes a challenge in carbonate sedimentology. Detrital dolomites are generally difficult to recognize and their presence can have profound consequences, even in small quantities, on the interpretation of the tectonosedimentary evolution and palaeoenvironmental conditions of the enclosing basin. In addition, identification and quantification of detrital dolomites may provide insight into provenance and sediment transportation, quality of hydrocarbon reservoirs, and some aspects of the dolomite problem. Typically, detrital dolomites are recognized by their clastic behaviour, such as 1) their wide range of grain sizes and shapes, 2) evidence for transportation and weathering, and 3) their association with other detrital grains. Detrital dolomite can be derived from dolomite-containing sediments (by reworking) or dolomite-containing rocks (by disintegration) and can be transported by various means including wind, water, glaciers and sediment gravity flows. Detrital dolomite can be found in a variety of lithofacies confirming that they are controlled by availability of dolomite detritus and not by depositional environment. The role of detrital dolomite in promoting diagenetic dolomitisation is examined whereby they have provided nucleation sites, for syntaxial overgrowth, or a source of Mg, through dissolution.
Czasopismo
Rocznik
Tom
Strony
81--89
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
- King Fahd University of Petroleum and Minerals, College of Petroleum Engineering and Geosciences, Geosciences Department, Dhahran 31261, Saudi Arabia
autor
- King Fahd University of Petroleum and Minerals, College of Petroleum Engineering and Geosciences, Geosciences Department, Dhahran 31261, Saudi Arabia
autor
- King Fahd University of Petroleum and Minerals, College of Petroleum Engineering and Geosciences, Geosciences Department, Dhahran 31261, Saudi Arabia
Bibliografia
- 1. Al-Bakri, D., Khalaf, F., Al-Ghadban, A., 1984. Mineralogy, genesis, and sources of surficial sediments in the Kuwait marine environment, northern Arabian Gulf. Journal of Sedimentary Research, 54: 1266-1279.
- 2. Alkuwairan, M.Y., 2012. Polygenetic dolomite in subtidal sediments of northern Kuwait Bay, Kuwait. Ph.D. thesis, Colorado School of Mines.
- 3. Al-Ramadan, K., Morad, S., Proust, J.N., Al-Aasm, I., 2005. Distribution of diagenetic alterations in siliciclastic shoreface deposits within a sequence stratigraphic framework: evidence from the Upper Jurassic, Boulonnais, NW France. Journal of Sedimentary Research, 75: 943-959.
- 4. Al-Ramadan, K., Morad, S., Plink-Björklund, P., 2013. Distribution of diagenetic alterations in relationship to depositional facies and sequence stratigraphy of a wave- and tide-dominated siliciclastic shoreline complex: Upper Cretaceous Chimney Rock Sandstones, Wyoming and Utah, USA. IAS Special Publication, 45: 271-296.
- 5. Amsbury, D.L., 1962. Detrital dolomite in central Texas. Journal of Sedimentary Research, 32: 5-14.
- 6. Andrews, J.T., 1998. Abrupt changes (Heinrich events) in late Quaternary North Atlantic marine environments: a history and review of data and concepts. Journal of Quaternary Science, 13: 3-16.
- 7. Arnaud, E., Eyles, C.H., 2002. Catastrophic mass failure of a Neoproterozoic glacially influenced continental margin, the Great Breccia, Port Askaig Formation, Scotland. Sedimentary Geology, 151: 313-333.
- 8. Awadh, S.M., 2012. Geochemistry and mineralogical composition of the airborne particles of sand dunes and dust storms settled in Iraq and their environmental impacts. Environmental Earth Sciences, 66: 2247-2256.
- 9. Bogacz, K., Dżułyński, S., Harańczyk, C., 1973. Caves filled with clastic dolomite and galena mineralization in disaggregated dolomites. Annales Societatis Geologorum Poloniae, 43: 59-72.
- 10. Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., Ivy, S., 1992. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360: 245-249.
- 11. Bone, Y., James, N.P., Kyser, T.K., 1992. Synsedimentary detrital dolomite in Quaternary cool-water carbonate sediments, Lacepede shelf, South Australia. Geology, 20: 109-112.
- 12. Clayton, R.N., Jones, B.F., 1968. Isotope studies of dolomite formation un der sedimentary conditions. Geochimica et Cosmochimica Acta, 32: 415-432.
- 13. Cullen, H.M., de Menocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T., Sirocko, F., 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology, 28: 379-382.
- 14. Davies, G.R., 1997. Aeolian sedimentation and bypass, Triassic of Western Canada. Bulletin of Canadian Petroleum Geology, 45: 624-642.
- 15. Davies, G.R., Moslow, T.F., Sherwin, M.D., 1997. The Lower Triassic Montney Formation, west-central Alberta. Bulletin of Canadian Petroleum Geology, 45: 474-505.
- 16. Deffeyes, K.S., Martin, E.L., 1962. Absence of carbon-14 activity in dolomite from Florida Bay. Science, 136: 782-782.
- 17. Deffeyes, K.S., Lucia, F.J., Weyl, P.K., 1965. Dolomitization of Recent and Plio-Pleistocene sediments by marine evaporite waters on Bonaire, Netherlands Antilles. SEPM Special Publication, 13: 71-88.
- 18. Degens, E.T., Epstein, S., 1964. Oxygen and carbon isotope ratios in coexisting calcites and dolomites from recent and ancient sediments. Geochimica et Cosmochimica Acta, 28: 23-44.
- 19. Dewever, B., 2008. Diagenesis and fluid flow in the sicilian fold-and-thrust belt. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium.
- 20. Epstein, S., Graf, D.L., Degens, E.T., 1964. Oxygen isotope studies on the origin of dolomites. In: Isotopic and Cosmic Chemistry (eds. H. Craig, S.L. Miller and G.J. Wasserburg): 169-180. North Holland, Amsterdam.
- 21. Evamy, B.D., 1963. The application of a chemical staining technique to a study of dedolomitisation. Sedimentology, 2: 164-170.
- 22. Fairchild, I.J., Hambrey, M.J., 1984. The Vendian succession of northeastern Spitsbergen: petrogenesis of a dolomite-tillite association. Precambrian Research, 26: 111-167.
- 23. Fairchild, I. J., Hambrey, M.J., Spiro, B., Jefferson, T.H., 1989. Late Proterozoic glacial carbonates in Northeast Spitsbergen; new insights into the carbonate-tillite association. Geological Magazine, 126: 469-490.
- 24. Fenton, L.K., Bishop, J.L., King, S., Lafuente, B., Horgan, B., Bustos, D., Sarrazin, P., 2017. Sedimentary differentiation of aeolian grains at the White Sands National Monument, New Mexico, USA. Aeolian Research, Special Issue for the Fourth International Planetary Dunes Workshop, 26: 117-136.
- 25. Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company.
- 26. Freeman, T., Rothbard, D., Obrador, A., 1983. Terrigenous dolomite in the Miocene of Menorca (Spain); provenance and diagenesis. Journal of Sedimentary Research, 53: 543-548.
- 27. Friedman, G.M., Sanders, J.E., 1967. Chapter 6 Origin and occurrence of dolostones. Developments in Sedimentology, 9: 267-348.
- 28. Fu, Q., Qing, H., Bergman, K.M., 2006. Paleokarst in Middle Devonian Winnipegosis mud mounds, subsurface of south-central Saskatchewan, Canada. Bulletin of Canadian Petroleum Geology, 54: 22-36.
- 29. Hansley, P.L., Whitney, C.G., 1990. Petrology, diagenesis, and sedimentology of oil reservoirs in Upper Cretaceous Shannon Sandstone Beds, Powder River basin, Wyoming. U.S. Geological Survey Bulletin: 1917-C.
- 30. Hatch, F.H., Rastall, R.H., 1965. Petrology of the Sedimentary Rocks, 4th Edition. Hafner Publishing Company.
- 31. Illing, L.V., Wells, A.J., Taylor, J.C.M., 1965. Penecontemporary dolomite in the Persian Gulf. SEPM Special Publication, 13: 89-111.
- 32. Ji, H., Wang, S., Ouyang, Z., Zhang, S., Sun, C., Liu, X., Zhou, D., 2004. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau: I. The formation of the Pingba profile. Chemical Geology, 203: 1-27.
- 33. Jones, B., 1991. Genesis of terrestrial oncoids, Cayman Islands, British West Indies. Canadian Journal of Earth Sciences, 28: 382-397.
- 34. Jones, D.J., 1953. Gypsum-oolite dunes, Great Salt Lake Desert, Utah. AAPG Bulletin, 37: 2530-2538.
- 35. Kelts, K., Hsü, K.J., 1978. Freshwater carbonate sedimentation. In: Lakes (ed. A. Lerman): 295-323. Springer, New York.
- 36. Kozłowski, W., 2015. Eolian dust influx and massive whitings during the kozlowski/Lau Event: carbonate hypersaturation as a possible driver of the mid-Ludfordian Carbon Isotope Excursion. Bulletin of Geosciences, 90: 807-840.
- 37. Leng, M.J., Marshall, J.D., 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23: 811-831.
- 38. Li, G., Chen, J., Chen, Y., Yang, J., Ji, J., Liu, L., 2007. Dolomite as a tracer for the source regions of Asian dust. Journal of Geophysical Research: Atmospheres, 112, D17201.
- 39. Lindholm, R.C., 1969. Detrital dolomite in Onondaga limestone (middle Devonian) of New York; its implications to the “dolomite question.” AAPG Bulletin, 53: 1035-1042.
- 40. Lojen, S., Ogrinc, N., Dolenec, T., 1999. Decomposition of sedimentary organic matter and methane formation in the recent sediment of Lake Bled (Slovenia). Chemical Geology, 159: 223-240.
- 41. Lyday, J.R., 1985. Atokan (Pennsylvanian) Berlin Field; genesis of recycled detrital dolomite reservoir, deep Anadarko Basin, Oklahoma. AAPG Bulletin, 69: 1931-1949.
- 42. Machel, H.G., Borrero, M.L., Dembicki, E., Huebscher, H., Ping, L., Zhao, Y., 2012. The Grosmont: the world's largest unconvenional oil reservoir hosted in carbonate rocks. Geological Society Special Publications, 370: 49-81.
- 43. Mangili, C., Brauer, A., Plessen, B., Dulski, P., Moscariello, A., Naumann, R., 2010. Effects of detrital carbonate on stable oxygen and carbon isotope data from varved sediments of the interglacial Pianico palaeolake (Southern Alps, Italy). Journal of Quaternary Science, 25: 135-145.
- 44. Martire, L., Bertok, C., D'atri, A., Perotti, E., Piana, F., 2014. Selective dolomitization by syntaxial overgrowth around detrital doliomite nuclei: a case from the Jurassic of the Ligurian Briançonnais (Ligurian Alps). Journal of Sedimentary Research, 84: 40-50.
- 45. Milliman, J.D., Müller, J., 1973. Precipitation and lithification of magnesian calcite in the deep-sea sediments of the eastern Mediterranean Sea. Sedimentology, 20: 29-45.
- 46. Mitchell, S.W., Horton, R.A., 1995. Dolomitization of modern subtidal sediments, New Providence Island, Bahamas. GSA Special Papers, 300: 189-199.
- 47. Mitchum, R.N., Bubb, J.N., Perry, D., 1969. Authigenic and detrital dolomite in unconsolidated deep-water sediments of West Florida Slope, Gulf of Mexico: Abstract. AAPG Bulletin, 53: 206-207.
- 48. Morad, S., Al-Ramadan, K., Ketzer, J.M., Ros, L.F.D., 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin, 94: 1267-1309.
- 49. Moscariello, A., Ravazzi, C., Brauer, A., Mangili, C., Chiesa, S., Rossi, S., de Beaulieu, J.-L., Reille, M., 2000. A long lacustrine record from the Piànico-Sèllere Basin (Middle-Late Pleistocene, Northern Italy). Quaternary International, EDLP - Med Special, 73: 47-68.
- 50. Pappone, G., Ferranti, L., 1995. Thrust tectonics in the Picentini Mountains, Southern Apennines, Italy. Tectonophysics, 252: 331-348.
- 51. Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and Sandstone. Springer.
- 52. Poros, Z., Machel, H.G., Mindszenty, A., Molnár, F., 2013. Cryogenic powderization of Triassic dolostones in the Buda Hills, Hungary. International Journal of Earth Sciences, 102: 1513-1539.
- 53. Ravaioli, M., Alvisi, F., Vitturi, L.M., 2003. Dolomite as a tracer for sediment transport and deposition on the northwestern Adriatic continental shelf (Adriatic Sea, Italy). Continental Shelf Research, 23: 1359-1377.
- 54. Sabins, F.F., 1962. Grains of detrital, secondary, and primary dolomite from Cretaceous strata of the Western Interior. GSA Bulletin, 73: 1183-1196.
- 55. Sander, B., 1951. Contributions to the study of depositional fabrics: rhythmically deposited Triassic limestones and dolomites. AAPG, Tulsa.
- 56. Sarg, J.F., 2001. The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review. Sedimentary Geology, 140: 9-34.
- 57. Shinn, E.A., Scholle, P.A., Bebout, D.G., Moore, C.H., 1983. Tidal flat environment. AAPG Memoir, 33: 171-210.
- 58. Suttner, L.J., 1969. Stratigraphic and petrographic analysis of upper Jurassic-lower Cretaceous Morrison and Kootenai formations, southwest Montana. AAPG Bulletin, 53: 1391-1410.
- 59. Talbot, M.R., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacus trine carbonates. Chemical Geology, 80: 261-279.
- 60. Taylor, K.G., Gawthorpe, R.L., 2003. Basin-scale dolomite cementation of shoreface sandstones in response to sea-level fall. GSA Bulletin, 115: 1218-1229.
- 61. Teranes, J.L., McKenzie, J.A., Bernasconi, S.M., Lotter, A.F., Sturm, M., 1999. A study of oxygen isotopic fractionation duríng bio-induced calcite precipitation in eutrophic Baldeggersee, Switzerland. Geochimica et Cosmochimica Acta, 63: 1981-1989.
- 62. Wells, N.A., 1983. Carbonate deposition, physical limnology and environmentally controlled chert formation in Paleocene-Eocene Lake Flagstaff, central Utah. Sedimentary Geology, 35: 263-296.
- 63. Wiggins, W.D., Harris, P.M., 1985. Burial diagenetic sequence in deep-water allochthonous dolomites, Permian Bone Spring Formation, Southeast New Mexico. SEPM Core Workshop Notes, 6: 140-173.
- 64. Young, H.R., Doig, D.J., 1986. Petrography and provenance of the Glauconitic Sandstone, south-central Alberta, with comments on the occurrence of detrital dolomite. Bulletin of Canadian Petroleum Geology, 34: 408-425.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-324c8aaf-5518-4954-ab40-174d24457b91