PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cattaneo-Vernotte bio-heat transfer equation. Identification of external heat flux and relaxation time in domain of heated skin tissue

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A cylindrical skin tissue domain subjected to an external heat flux is considered. Thermal processes in the domain considered are described by the Cattaneo-Vernotte equation supplemented by the appropriate boundary and initial conditions. The aim of considerations is the identification of external heat flux and relaxation time on the basis of ‘measured’ heating/cooling curves at the set of selected points located on the surface of the skin. The direct problem is solved using the implicit scheme of the Finite Difference Method (FDM), while at the stage of the inverse problem solution, the evolutionary algorithm is applied. In the final part of the paper the examples of computations are presented.
Rocznik
Strony
71--80
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Technical Faculty University of Occupational Safety Management in Katowice Bankowa 8, 40-007 Katowice, Poland
autor
  • Institute of Computational Mechanics and Engineering Faculty of Mechanical Engineering Silesian University of Technology Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] H.H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1: 93–122, 1948, https://doi.org/10.1152/jappl.1948.1.2.93.
  • [2] S. Kumar, A. Srivastava. Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation. Applied Mathematical Modelling, 52: 378–403, 2017, https://doi.org/10.1016/j.apm.2017.05.041.
  • [3] K.C. Liu, J.Ch. Wang. Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model. International Journal of Heat and Mass Transfer, 70: 621–628, 2014, https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.044.
  • [4] B. Mochnacki, E. Majchrzak. Numerical model of thermal interactions between cylindrical cryoprobe and bio-logical tissue using the dual phase lag equation. International Journal of Heat and Mass Transfer,108: 1–10, 2017, https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.103.
  • [5] A.N. Smith, P.M. Norris. Microscale Heat Transfer. John Willey & Sons, New York, 2003.
  • [6] M.C. Cattaneo. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus, 247: 431–433, 1958.
  • [7] W. Kaminski. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. Journal of Heat Transfer, 112: 555–560, 1990, https://doi.org/10.1115/1.2910422.
  • [8] E. Majchrzak, L. Turchan, J. Dziatkiewicz. Modeling of skin tissue heating using the generalized dual-phase lag equation. Archives of Mechanics, 67(6): 417–437, 2015.
  • [9] M. Ciesielski, B. Mochnacki. Hyperbolic model of thermal interactions in a system biological tissue-protective clothing subjected to an external heat source. Numerical Heat Transfer Part A-Applications, 74(11): 1685–1700, 2018, https://doi.org/10.1080/10407782.2018.1541292.
  • [10] K. Mitra, S. Kumar, A. Vedavarz, M.K. Moallemi. Experimental evidence of hyperbolic heat conduction in processed meat. Journal of Heat Transfer, 117: 568–573, 1995, https://doi.org/10.1115/1.2822615.
  • [11] F. Xu, K.A. Seffen, T.J. Lu. Non-Fourier analysis of skin biothermomechanics. International Journal of Heat and Mass Transfer, 51: 2237–2259, 2008, https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024.
  • [12] M.I.A. Othman, M.G.S. Ali, M.R. Farouk. The effect of relaxation time on the heat transfer and temperature distribution in tissues. World Journal of Mechanics, 1: 283–287, 2011, https://doi.org/10.4236/wjm.2011.16035.
  • [13] Y. Zhang. Generalized dual-phase lag bioheat equations based on non equilibrium heat transfer in living biological tissues. International Journal of Heat and Mass Transfer, 52: 4829–4834, 2009, https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.007.
  • [14] E. Majchrzak. Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method. Computer Modeling in Engineering & Sciences, 69(1): 43–60, 2010, https://doi.org/10.3970/cmes.2010.069.043.
  • [15] E. Majchrzak, B. Mochnacki. Application of numerical methods for solving the non-Fourier equations. A review of our own and collaborators’ works. Journal of Applied Mathematics and Computational Mechanics, 17(2):43–50, 2018, https://doi.org/10.17512/jamcm.2018.2.04.
  • [16] E. Majchrzak, B. Mochnacki. Implicit scheme of the finite difference method for a second-order dual phase lag equation. Journal of Theoretical and Applied Mechanics, 56: 393–402, 2018, http://dx.doi.org/10.15632/jtam-pl.56.2.393.
  • [17] D. Deng, Y. Jiang, D. Liang. High-order finite difference method for a second-order dual-phase-lagging models of microscale heat transfer. Applied Mathematics and Computation, 309: 31–48, 2017, https://doi.org/10.1016/j.amc.2017.03.035.
  • [18] E. Majchrzak, B. Mochnacki. First and second order dual phase lag equation. Numerical solution using the explicit and implicit schemes of the finite difference method. MATEC Web of Conferences, 240: Article Number 05018, 2018, https://doi.org/10.1051/matecconf/201824005018.
  • [19] B. Mochnacki, M. Paruch. Estimation of relaxation and thermalization times in microscale heat transfer. Journal of Theoretical and Applied Mechanics, 51(4): 837–845, 2013.
  • [20] B. Mochnacki, E. Majchrzak, M. Paruch. Soft tissue freezing process. Identification of the dual phase lag model parameters using the evolutionary algorithms. AIP Conference Proceedings, 1922: Article Number 060001, 2018,https://doi.org/10.1063/1.5019062.
  • [21] E. Majchrzak, M. Paruch. Identification of electromagnetic field parameters assuring the cancer destruction during hyperthermia treatment. Inverse Problems in Science and Engineering, 19(1): 45–58, 2011,https://doi.org/10.1080/17415977.2010.531473.
  • [22] M. Paruch. Identification of the degree of tumor destruction on the basis of the Arrhenius integral using the evolutionary algorithm. International Journal of Thermal Sciences, 130: 507–517, 2018, https://doi.org/10.1016/j.ijthermalsci.2018.05.015.
  • [23] Z. Michalewicz.Genetic Algorithms+Data Structures=Evolution Programs. Springer-Verlag, Berlin, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-324596c2-f433-494f-9cda-2f6895a80d41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.