PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gravimetric Evolution During Sewage Sludge Biostabilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sewage sludge is a by-product in the wastewater treatment and is an inherent hazardous issue because of the pathogenic contamination of natural resources. Therefore, in this study, domestic sludge was treated with premontane forest soil, macronutrients, and also pasteurization to reduce the content of volatile solids and pathogens. The best biostabilization treatment using premontane forest soil and pasteurization obtained a volatile solids reduction of 87% according to the environmental regulations, in which a biosolid is stable in a range of 38% of volatile solids reduction. In less than 30 days in a mesophilic range, the coliform count was reduced up to 71% when using forest soil and pasteurization. Thus, a biosolid-class B was obtained using gravimetric means as a platform to promote fast quality control.
Słowa kluczowe
Rocznik
Strony
76--85
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Universidad de Las Américas (UDLA), Faculty of Engineering and Agrarian Sciences, Environmental Engineering, Av. de los Granados and José Queri, 59302, Quito, Ecuador
  • Universidad Nacional Mayor de San Marcos (UNMSM), 07001, Lima, Perú
  • Instituto Antártico Ecuatoriano (INAE), 59316, 9 de Octubre y Chile, Guayaquil, Ecuador
  • Universidad de Las Américas (UDLA), Faculty of Engineering and Agrarian Sciences, Environmental Engineering, Av. de los Granados and José Queri, 59302, Quito, Ecuador
autor
  • Universidad Nacional Mayor de San Marcos (UNMSM), 07001, Lima, Perú
autor
  • Universidad Agraria del Ecuador (UAE), Environmental Engineering School, Faculty of Agrarian Sciences, Av. 25 de Julio and P. Jaramillo, 59304, Guayaquil, Ecuador
Bibliografia
  • 1. Ahring, B.K., Sandberg, M., and Angelidaki, I. 1995. Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology, 43(3), 559–565.
  • 2. Amani, T., Nosrati, M., and Sreekrishnan, T.R. 2010. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects – a review. Environmental Reviews, 18(NA), 255–278.
  • 3. Barrios, J.A., Becerril, E., De León, C., Barrera-Díaz, C. and Jiménez, B. 2015. Electrooxidation treatment for removal of emerging pollutants in wastewater sludge. Fuel, 149, 26–33.
  • 4. Berktay, A., and Nas, B. 2007. Biogas Production and Utilization Potential of Wastewater Treatment Sludge. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(2), 179–188. https://doi.org/10.1080/00908310600712489
  • 5. Bernal, M.P., Sanchez-Monedero, M.A., Paredes, C., and Roig, A. 1998. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agriculture, Ecosystems and Environment, 69(3), 175–189.
  • 6. Bhattacharya, S.K., Madura, R.L., Walling, D.A., and Farrell, J.B. 1996. Volatile solids reduction in two-phase and conventional anaerobic sludge digestion. Water Research, 30(5), 1041–1048.
  • 7. Braguglia, C.M., Gianico, A., Gallipoli, A., and Mininni, G. 2015. The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: Role of the organic load. Chemical Engineering Journal, 270, 362–371.
  • 8. Bright, D.A., and Healey, N. 2003. Contaminant risks from biosolids land application. Environmental Pollution, 126(1), 39–49. https://doi. org/10.1016/S0269–7491(03)00148–9
  • 9. Cain, G. D. (2010). Sanitizing Sewage Sludge: The Intersection of Parasitology, Civil Engineering, and Public Health. Journal of Parasitology, 96(6), 1037–1040. https://doi.org/10.1645/GE-2631.1
  • 10. Carrère, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenès, J.P., Steyer, J.P., and Ferrer, I. 2010. Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183(1–3), 1–15. https://doi.org/10.1016/j. jhazmat.2010.06.129
  • 11. Cofie, O., Nikiema, J., Impraim, R., Adamtey, N., Paul, J., and Kone, D. 2016. Co-composting of solid waste and fecal sludge for nutrient and organic matter recovery: Retrieved from https://books. google.com.ec/books?id=QrukDQAAQBAJ
  • 12. De Vrieze, J., Smet, D., Klok, J., Colsen, J., Angenent, L.T., and Vlaeminck, S.E. 2016. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresource Technology, 218, 1237–1245.
  • 13. Dong, B., Liu, X., Dai, L., and Dai, X. 2013. Changes of heavy metal speciation during highsolid anaerobic digestion of sewage sludge. Bioresource Technology, 131, 152–158.
  • 14. Eastman, J.A., and Ferguson, J.F. 1981. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. Journal (Water Pollution Control Federation), 352–366.
  • 15. Egan, M. 2013. Biosolids management strategies: an evaluation of energy production as an alternative to land application. Environmental Science and Pollution Research, 20(7), 4299–4310. https:// doi.org/10.1007/s11356–013–1621–1
  • 16. Environmental Protection Agency 1994. A Plain English Guide to the EPA Part 503 Biosolids Rule. Retrieved from https://www.epa.gov/biosolids/
  • 17. Fernández-Rodríguez, J., Pérez, M., and Romero, L.I. 2015. Temperature-phased anaerobic digestion of Industrial Organic Fraction of Municipal Solid Waste: A batch study. Chemical Engineering Journal, 270, 597–604. https://doi.org/10.1016/j. cej.2015.02.060
  • 18. Fytili, D., and Zabaniotou, A. 2008. Utilization of sewage sludge in EU application of old and new methods – A review. Renewable and Sustainable Energy Reviews, 12(1), 116–140. https://doi.org/10.1016/j.rser.2006.05.014
  • 19. Gattie, D.K., and Lewis, D.L. 2003. A High-Level Disinfection Standard for Land-Applied Sewage Sludges (Biosolids). Environmental Health Perspectives, 112(2), 126–131. https://doi.org/10.1289/ehp.6207
  • 20. Gerba, C.P., Ross, A., Takizawa, K., and Pepper, I.L. 2011. Efficiency of ASTM Method D4994–89 for Recovery of Enteric Viruses from Biosolids. Food and Environmental Virology, 3(1), 43–45. https://doi.org/10.1007/s12560–011–9054–9
  • 21. Gómez, X., Cuetos, M.J., García, A.I., and Morán, A. 2005. Evaluation of digestate stability from anaerobic process by thermogravimetric analysis. Thermochimica Acta, 426(1–2), 179–184. https://doi.org/10.1016/j.tca.2004.07.019
  • 22. Hale, R.C., La Guardia, M.J., Harvey, E.P., Gaylor, M.O., Mainor, T.M., and Duff, W.H. 2001. Flame retardants: Persistent pollutants in land-applied sludges. Nature, 412(6843), 140–141. https://doi.org/10.1038/35084130
  • 23. Harris, P.W., and McCabe, B.K. 2015. Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Applied Energy, 155, 560–575. https://doi.org/10.1016/j.apenergy.2015.06.026
  • 24. Jenicek, P., Bartacek, J., Kutil, J., Zabranska, J., and Dohanyos, M. 2012. Potentials and limits of anaerobic digestion of sewage sludge: Energy self-sufficient municipal wastewater treatment plant? Water Science and Technology, 66(6), 1277. https://doi.org/10.2166/wst.2012.317
  • 25. Kinney, C.A., Furlong, E.T., Zaugg, S.D., Burkhardt, M.R., Werner, S.L., Cahill, J.D., and Jorgensen, G.R. 2006. Survey of Organic Wastewater Contaminants in Biosolids Destined for Land Application. Environmental Science and Technology, 40(23), 7207–7215. https://doi.org/10.1021/ es0603406
  • 26. Krach, K.R., Burns, B.R., Li, B., Shuler, A., Cole, C., and Xie, Y. 2008. Odor Control for Land Application of Lime Stabilized Biosolids. Water, Air, and Soil Pollution: Focus, 8(3–4), 369–378. https:// doi.org/10.1007/s11267–007–9147–5
  • 27. Krüger, O., Grabner, A., and Adam, C. 2014. Complete Survey of German Sewage Sludge Ash. Environmental Science and Technology, 48(20), 11811–11818. https://doi.org/10.1021/es502766x
  • 28. Lewis, D.L., Garrison, A.W., Wommack, K.E., Whittemore, A., Steudler, P., and Melillo, J. 1999. Influence of environmental changes on degradation of chiral pollutants in soils. Nature, 401(6756), 898–901. https://doi.org/10.1038/44801
  • 29. Lewis, D.L., Gattie, D.K., Novak, M.E., Sanchez, S., and Pumphrey, C. 2002. Interactions of pathogens and irritant chemicals in land-applied sewage sludges (biosolids). BMC Public Health, 2(1), 11.
  • 30. Li, X., Brown, D.G., and Zhang, W. 2007. Stabilization of biosolids with nanoscale zero-valent iron (nZVI). Journal of Nanoparticle Research, 9(2), 233–243. https://doi.org/10.1007/s11051–006–9187–1
  • 31. Mu, D., Addy, M., Anderson, E., Chen, P., and Ruan, R. 2016. A life cycle assessment and economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants. Bioresource Technology, 204, 89–97. https://doi.org/10.1016/j.biortech.2015.12.063
  • 32. Mulla, S.I., Wang, H., Sun, Q., Hu, A., and Yu, C.-P. 2016. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Scientific Reports, 6(1). https://doi.org/10.1038/srep21965
  • 33. Mustafa, N., Elbeshbishy, E., Nakhla, G., and Zhu, J. 2014. Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor. Bioresource Technology, 172, 461–466. https://doi.org/10.1016/j.biortech.2014.09.081
  • 34. Oleszkiewicz, J.A., and Mavinic, D.S. 2002. Wastewater biosolids: an overview of processing, treatment, and management. Journal of Environmental Engineering and Science, 1(2), 75–88. https://doi.org/10.1139/s02–010
  • 35. Oron, G., Adel, M., Agmon, V., Friedler, E., Halperin, R., Leshem, E., and Weinberg, D. 2014. Greywater use in Israel and worldwide: Standards and prospects. Water Research, 58, 92–101. https://doi.org/10.1016/j.watres.2014.03.032
  • 36. Otero, M., Calvo, L.F., Estrada, B., Garcıa, A.I., and Moran, A. 2002. Thermogravimetry as a technique for establishing the stabilization progress of sludge from wastewater treatment plants. Thermochimica Acta, 389(1), 121–132.
  • 37. Parkin Gene F., and Owen William F. 1986. Fundamentals of Anaerobic Digestion of Wastewater Sludges. Journal of Environmental Engineer ing, 112(5), 867–920. https://doi.org/10.1061/(ASCE)0733–9372(1986)112:5(867)
  • 38. Rogers, H.R. 1996. Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Science of the Total Environment, 185(1), 3–26.
  • 39. Ruffino, B., Campo, G., Genon, G., Lorenzi, E., Novarino, D., Scibilia, G., and Zanetti, M. 2015. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. Bioresource Technology, 175, 298–308. https://doi.org/10.1016/j.biortech.2014.10.071
  • 40. Rulkens, W. 2008. Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options. Energy and Fuels, 22(1), 9–15. https://doi.org/10.1021/ef700267m
  • 41. Singh, R.P., and Agrawal, M. 2008. Potential benefits and risks of land application of sewage sludge. Waste Management, 28(2), 347–358. https://doi.org/10.1016/j.wasman.2006.12.010
  • 42. Snowden-Swan, L.J., Hallen, R.T., Zhu, Y., Billing, J.M., Jones, S.B., Hart, T.R., et al. 2016. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis. Pacific Northwest National Laboratory (PNNL), Richland, WA (US). Retrieved from http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-25464Rev1.pdf
  • 43. Song, Y.-C., Kwon, S.-J., and Woo, J.-H. 2004. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Research, 38(7), 1653–1662. https://doi.org/10.1016/j.watres.2003.12.019
  • 44. Stasinakis, A.S. 2012. Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresource Technology, 121, 432–440. https://doi.org/10.1016/j.biortech.2012.06.074
  • 45. Tchobanoglous, G., Burton, F.L., and Stensel, H.D. 2013. Wastewater Engineering: Treatment and Resource Recovery. McGraw-Hill Education. Retrieved from https://books.google.com.ec/books?id=BL3wjgEACAAJ
  • 46. Venkatesan, A.K., and Halden, R.U. 2014. Wastewater Treatment Plants as Chemical Observatories to Forecast Ecological and Human Health Risks of Manmade Chemicals. Scientific Reports, 4. https:/doi.org/10.1038/srep03731
  • 47. Wang, H., Brown, S.L., Magesan, G.N., Slade, A.H., Quintern, M., Clinton, P.W., and Payn, T.W. (2008a). Technological options for the management of biosolids. Environmental Science and Pollution Research – International, 15(4), 308–317. https://doi.org/10.1007/s11356–008–0012–5
  • 48. Wang, H., Brown, S.L., Magesan, G.N., Slade, A.H., Quintern, M., Clinton, P.W., and Payn, T.W. 2008b. Technological options for the management of biosolids. Environmental Science and Pollution Research – International, 15(4), 308–317. https://doi.org/10.1007/s11356–008–0012–5
  • 49. Wang, L.K., Hung, Y.-T., and Shammas, N.K. 2007. Biosolids Treatment Processes. Totowa (NJ): Humana Press.
  • 50. Weemaes, M.P.J., and Verstraete, W.H. 1998. Evaluation of current wet sludge disintegration techniques. Journal of Chemical Technology and Biotechnology, 73(2), 83–92.
  • 51. Wei, Y., Van Houten, R.T., Borger, A.R., Eikelboom, D.H., and Fan, Y. 2003. Minimization of excess sludge production for biological wastewater treatment. Water Research, 37(18), 4453–4467. https://doi.org/10.1016/S0043–1354(03)00441-X
  • 52. Wu, L., Ma, L., and Martinez, G. 2000. Comparison of methods for evaluating stability and maturity of biosolids compost. Journal of Environmental Quality, 29(2), 424–429.
  • 53. Ye, F., Liu, X., and Li, Y. 2014. Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion. Water Science and Technology, 70(9), 1555.
  • 54. Yuan, H., and Zhu, N. 2016. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews, 58, 429–438. https://doi.org/10.1016/j.rser.2015.12.261
  • 55. Zahan, Z., Othman, M.Z., and Rajendram, W. 2016. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study. BioMed Research International, 2016, 1–13. https://doi.org/10.1155/2016/8462928
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32447dd0-822e-4a2f-b4a6-397925e8a0ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.