PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polimery przewodzące w ochronie przed korozją

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Conductive polymers in corrosion protection
Języki publikacji
PL
Abstrakty
PL
W ostatnich latach zwraca się szczególną uwagę na projektowanie i przygotowywanie nowych powłok chroniących metale przed korozją. Wysiłek ten po części jest motywowany pragnieniem zastąpienia powłok chromianowych używanych do zabezpieczenia korozji żelaza i stopów aluminiowych. Udowodniono, iż chrom zagraża środowisku i ludzkiemu zdrowiu, a jego użycie w wielu krajach będzie radykalnie ograniczane w następnych latach. Elektroaktywne polimery przewodzące reprezentują klasę interesujących materiałów do zastosowania w postaci powłok chroniących przed korozją i prawdopodobnie to one, lub układy kompozytowe na ich bazie, zastąpią powłoki chromianowe. Podobnie jak powłoki chromianowe polimery przewodzące wykazują interesujące i potencjalnie korzystne oddziaływanie na aktywne stopy powodując zmianę ich korozyjnego zachowania. Szczególne właściwości charakteryzujące polimery przewodzące, takie jak trwałość fizykochemiczna, stosunkowo łatwe ich otrzymywanie, możliwość modyfikacji, oraz dobre przewodnictwo, różni je od tradycyjnych powłok organicznych. Najczęściej badanymi powłokami polimerowymi są polianilina (PANI), polipirol (PPy) i politiofeny (PT), ze względu na możliwość ich modyfikacji i łatwość uzyskania [1-3]. Praca ta stanowi przegląd literaturowy perspektyw zastosowania powłok na bazie polimerów przewodzących w ochronie przed korozją.
EN
Particular considerations has been given in recent years to the design and preparation of new coatings intended to protect metals against corrosion. This effort is partially motivated by the wish to replace chromate coatings used for the corrosion protection of iron an aluminium alloys. It has been proved that chromium poses a threat to the natural environment and human health, and its use will be radically reduced in many countries in the years to come. Electroactive conductive polymers represent a class of interesting materials to be used in the form of corrosion protective coatings, and it is probably them or composite systems based on them that will replace chromate coatings. Just like chromate coatings, conductive polymers exhibit an interesting and potentially advantageous influence on active alloys, causing a change in their corrosion behaviour. Unique properties of conductive polymers (ECP), such as physicochemical stability, relatively easy fabrication, modifiability and good conductivity, distinguish them from traditional organic coatings. The most often examined polymer coatings include polyaniline (PANI), polypyrrole (PPy) and polythiophenes, because of their susceptibility to modification and ease of obtaining [1-3]. This article provides a review of literature outlooks for using conductive polymerbased coatings in corrosion protection.
Rocznik
Tom
Strony
363--368
Opis fizyczny
Bibliogr. 92 poz., rys., tab.
Twórcy
autor
  • Katedra Chemii, Wydział Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej, Politechniki Częstochowskiej
Bibliografia
  • [1] Tallman Dennis E., Geoff Spinks, Anton Dominis, Gordon G. Wallace. 2002. “Electroactive conducting polymers for corrosion control”. Journal of Solid State Electrochemistry 6 : 73–84, 6 : 85.
  • [2] Deshpande Pravin P., Dimitra Sazou. 2016. Corrosion Protection of Metals by Intrinsically Conducting Polymers. CRC Press, Taylor & Francis Group.
  • [3] Deshpande Pravin P., Niteen G. Jadhav, Victoria J. Gelling, Dimitra J. Sazou. 2014. “Conducting polymers for corrosion protection: a review”. Journal of Coatings Technology and Research 11 (4) 473–494.
  • [4] Jones Deny. 1996. Principles and prevention of corrosion. Prentice Hall, New York.
  • [5] Schmitt Gunter, Michael Schutze, George F. Hays, Wayne Burns, En-Hou Han, Antoine Pourbaix, Gretchen Jacobson. 2009. Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control. The World Corrosion Organization.
  • [6] Bhaskaran R., Narayanan Palaniswamy, Nanjangud S. Rengaswamy, Muthuve Jayachandran. 2005. “A review of differing approaches used to estimate the cost of corrosion (and their relevance in the development of modern corrosion prevention and control strategies)”. Anti-Corrosion Methods and Materials 52 (1) : 29–41.
  • [7] Biezma Maria V., J. R. San Cristobal. 2005. “Methodology to study cost of corrosion”. Engineering Science and Technology 40 (4) : 344–352.
  • [8] Cohen Samuel M. 1995. “Replacements for Chromium Pretreatments on Aluminum” Corrosion 51 (1) : 71–78.
  • [9] Twite Rebecca L., Gordon P. Bierwagen. 1998. “Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys”. Progress in Organic Coatings 33 (2) : 91–100.
  • [10] Wallace Gordon G., Peter R. Teasdale, Geoffrey M. Spinks, Leon A. P. Kane-Maguire. 2008. Conductive Electroactive Polymers: Intelligent Polymer Systems. CRC Press, Taylor & Francis Group, LLC.
  • [11] Stejskal Jaroslav, Maria Omastova, Svetlana Fedorova, Jan Prokeš, Miroslava Trchova. 2003. “Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study”. Polymer 44 (5) : 1353–1358.
  • [12] Hino Tetsuo,Takumi Namiki, Noriyuki Kuramoto. 2006. “Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers”. Synthetic Metals 156 (21-24) : 1327–1332.
  • [13] Ashraf Syed A. , Fei Chen, Too CO, Gordon G. Wallace. 1996. “Bulk electropolymerization of alkylpyrroles”. Polymer 37 : 2811.
  • [14] Lin Xia Wang, Xin Gui Li, Yu Liang Yang. 2001. “Preparation, properties and applications of polypyrroles”. Reactive and Functional Polymers 47 (2) : 125–139.
  • [15] Reynolds John R, N.S. Sundaresan, Martin Pomerantz, Sanjay Basak, Charles K. Baker. 1988. “Self-doped conducting copolymers: a charge and mass transport study of poly-{pyrrole-CO[3-(pyrrol-1-YL) propanesulfonate]}”. Journal of Electroanaytycal Chemistry and Interfacial Electrochemistry 250 : 355.
  • [16] Jaeger Werner, Joerg Bohrisch, Andre Laschewsky. 2010. “Synthetic polymers with quaternary nitrogen atoms–Synthesis and structure of the most used type of cationic polyelectrolytes”. Progress in Polymer Science 35 : 511–577.
  • [17] Eisazadeh Hamid, Geoff Spinks, Gordon G. Wallace. 1993. “Conductive electroactive plant containing polypyrrole colloids”. Mater Forum 17 : 241.
  • [18] Wallace Gordon G., Peter R. Teasdale, Geoff Spinks, LAB Kane-Maguire. 2003. Conductive Electroactive Polymers: Intelligent Materials Systems. Second Edition. CRC Press, Taylor & Francis Group.
  • [19] Barisci Joseph N, Jaleh Mansouri, Geoff M. Spinks, Gordon G.Wallace, Kim CY, Kim DY, Kim JY. 1997. “Electrochemical preparation of polypyrrole colloids using a flow cell”. Colloids and Surfaces A 126 : 129.
  • [20] Innis Peter C., Geoff Spinks, Gordon G. Wallace. 1998. 56th Annu Tech Conf Soc Plast Eng 1224-1228; 1998. Chem Abstr 130 : 44593.
  • [21] McCarthy Gerard P, Stewen P. Armes, Stuart J. Greaves, John F.Watts. 1997. “Synthesis and Characterization of Carboxylic Acid-Functionalized Polypyrrole-Silica Microparticles Using a 3-Substituted Pyrrole Comonomer”. Langmuir 13 (14) : 3686–3692.
  • [22] Aboutanos Vickie, Joseph N. Barisci, Leon AP Kane-Maguire, Gordon G. Wallace. 1999. “Electrochemical preparation of chiral polyaniline nanocomposites”. Synthetic Metals 106 (2) : 89–95.
  • [23] Wiersma Aaltie E, Lucia MA van der Steeg, Theophilus JM Jongeling.1995. “Waterborne core-shell dispersions based on intrinsically conducting polymers for coating applications”. Synthetic Metals 71 : 2269.
  • [24] Aboutanos Vickie, Leon AP Kane-Maguire, Gordon G.Wallace. 2000. “Electrosynthesis of polyurethane-based core-shell PAn·(+)-HCSA colloids”. Synthetic Metals 114 (3) : 313–320.
  • [25] Carswell Andrew D.W., Edgar A. O’Rea, Brian P. Grady. 2003. “Adsorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces: From Spheres to Wires to Flat Films”. Journal of the American Chemical Society 125 (48) : 14793–14800.
  • [26] Lee Junyoung Y. KieTae Song, Sang Yong Kim, Youngchul Kim, Dongyoung Kim, Chungyup Kim. 1997. “Synthesis and characterization of soluble polypyrrole”. Synthetic Metals 84 : 137.
  • [27] Lee Junyoung , Dongyoung Kim, Chungyup Kim. 1995. “Synthesis of soluble polypyrrole of the doped state in organic solvents”. Synthetic Metals 74 : 103.
  • [28] Cao Young, Jinjin Qiu, Paul Smith. 1995. “Effect of solvents and co-solvents on the processibility of polyaniline: I. Solubility and conductivity studies”. Synthetic Metals 69 : 187.
  • [29] Neoh Koon G, MY Pun, ET Kang, Kuang Lee Tan. 1995. “Polyaniline treated with organic acids: doping characteristics and stability”. Synthetic Metals 73 : 209.
  • [30] Baldissera Alessandra F., Carlos A. Ferreira. 2012. “Coatings based on electronic conducting polymers for corrosion protection of metals”. Progress in Organic Coatings 75 : 241–247.
  • [31] Sinclair J. Dawid., Robert P. Frankenthal, Erika Kalman, Waldfried Plieth W. 2001. “Corrosion and Corrosion Protection”. The Electrochemical Society, Proceedings Volume 2001 : 22.
  • [32] Skotheim Terije. A. (Ed.).1986. Handbook of Conducting Polymers, 1 and 2. Marcel Dekker, New York.
  • [33] Sakmeche Nacer, Jean-Jacques Aaron, Salah Aeiyach Pierre Camille Lacaze. 2000. “Usefulness of aqueous anionic micellar media for electrodeposition of poly-(3,4-ethylenedioxythiophene) films on iron, mild steel and aluminium”. Electrochimica Acta 45 (12) : 1921–1931.
  • [34] Deshpande Pravin P., Niteen. G. Jadhav, Victoria. J. Gelling, Dimitra Sazou. 2014. “Conducting polymers for corrosion protection: a review”. Journal of Coatings Technology and Research 11 (4) : 473.
  • [35] Spinks Geoffrey M , Anton J. Dominis, Gordon.G. Wallace, Dennis E. Tallman. 2002. “Electroactive conducting polymers for corrosion control”. Journal of Solid State Electrochemistry 6 : 85–100.
  • [36] DeBerry Dawid W. 1985. “Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating”. Journal of the Electrochemical Society 132 : 1022.
  • [37] Williams Geraint, Neil McMurray. 2005. “Factors Affecting Acid-Base Stability of the Interface Between Polyaniline Emeraldine Salt and Oxide Covered Metal”. Electrochemical and Solid-State Letters 8, 9 : B42–B45.
  • [38] Karpagam V., Sadagopan Sathiyanarayanan, Gopalachari Venkatachari. 2008. “Studies on corrosion protection of Al2024 T6 alloy by electropolymerized polyaniline coating”. Current Applied Physics 8 (1) : 93–98.
  • [39] Tallman Dennis E, Yong-quk Pae, Gordon P. Bierwagen. 2000. “Conducting polymers and corrosion: Part 2—Polyaniline on aluminum alloys”. Corrosion 56 : 401.
  • [40] Huerta-Vilca Domingo, Sandra Reginade, Moraes Arturde, Jesus Motheo. 2004. “Anodic treatment of aluminum in nitric acid containing aniline, previous to deposition of polyaniline and its role on corrosion”. Synthetic Metals 140 (1) : 23–27.
  • [41] Racicot Robert, Robert L. Clark, Hongbo Bang Liu, Shi ChengYang, MN Alias, Ronald Brown. 1995. “Thin film conductive polymers on aluminum surfaces: interfacial chargetransfer and anticorrosion aspects”. Proc SPIE Int Soc Opt Eng 2528 : 251.
  • [42] Racicot Robert J, Robert L. Clark, Hongbo Bang Liu, Shi ChengYang, MN Alias, Ronald Brown. 1996. “Anti-corrosion studies of novel conductive polymer coatings on aluminum alloys”. Mater Res Soc Symp Proc 413 : 529.
  • [43] Racicot Robert, Ronald Brown, Shi ChengYang. 1997. “Corrosion protection of aluminum alloys by double-strand polyaniline”. Synthetic Metals 85 : 1263.
  • [44] Racicot Robert, Shi ChengYang, Ronald Brown. 1997. “Corrosion protection of aluminum alloys by double-strand polyaniline”. Mater Res Soc Symp Proc 458 : 415.
  • [45] Yang Shi Cheng, Robert J. Racicot, Robert L. Clark, Huaibing Liu, Richard Brown, Mohd Norazmi Alias. 1997. The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations, USA. “Electroactive polymer coatings for corrosion control on metal”. PCT Int Appl WO 9703127, CAN 126:200741.
  • [46] Gałkowski Mariusz, Marcin A. Malik, Henryk Bala, Paweł J. Kulesza. 1995. „Zastosowanie polimerów przewodzących do stabilizowania warstw pasywnych”. Materiały Ogólnopolskiego Sympozjum Nowe Osiągnięcia w Badaniach i Inżynierii Korozyjnej, Poraj, 99.
  • [47] Lu Wei-Kang, Ronald L. Elsenbaumer, Bernhard Wessling. 1995. “Corrosion protection of mild steel by coatings containing polyaniline”. Synthetic Metals 71 : 2163.
  • [48] Pawar Pritee, Anil Bhikaji Gaikawad, Pradip P. Patil. 2006. “Electrochemical synthesis of corrosion protective polyaniline coatings on mild steel from aqueous salicylate medium”. Science and Technology of Advanced Materials 7 : 732–744.
  • [49] Chen Fei, Peng Liu. 2011. Conducting Polyaniline Nanoparticles and Their Dispersion for Waterborne Corrosion Protection Coatings, ACS Appl. Mater. Interfaces 3 (7) : 2694–2702.
  • [50] McAndrew Page T, Stephen A. Miller, Andrew G. Gilicinski, Lloyd M. Robeson. 1996. “Poly(aniline) in corrosion resistant coatings”. Polym Mater Sci Eng 74 : 204.
  • [51] Chang Min-Jong , Allan S. Myerson, T. K. Kwei. 1997. “Gas transport in ring substituted polyanilines”. Polymer Engineering and Science 37 (5) 868–875.
  • [52] Nunez Magdalena. 2007. Prevention of Metal Corrosion: New Research. Nova Publishers, New York.
  • [53] Deshpande Pravin P., Dimitra Sazou. 2016. Corrosion Protection of Metals by Intrinsically Conducting Polymers. CRC Press, Taylor&Francis Group.
  • [54] Pud Aleksander A, Galina S. Shapoval, Peter Kamarchik, N. A. Ogurtsov, V.F. Gromovaya, IE Myronyuk, Yu V. Kontsur. 1999. “Electrochemical behavior of mild steel coated by polyaniline doped with organic sulfonic acids”. Synthetic Metals 107 (2) : 111–115.
  • [55] Bernard Maria C, Claudeve Deslouis, Touriya El Moustafid, A. Hugot-LeGoff, Suzzane Joiret, Bernard Tribollet. 1999. „Combined impedance and raman analysis in the study of corrosion protection of iron by polyaniline”. Synthetic Metals 102 (1–3) : 1381–1382.
  • [56] Schauer Thadeus, Axel Joos, Lothar Dulog, Claus Eisenbach. 1998. „Protection of iron against corrosion with polyaniline primers”. Progress in Organic Coatings 33 (1) : 20–27.
  • [57] Ahmad Nasser Alan G., Macdiarmid. 1996. “Inhibition of corrosion of steels with the exploitation of conducting polymers”. Synthetic Metals 78 (2) : 103–110.
  • [58] Bernard Maria C, A Hugot-LeGoff, S. Joiret, Nguyen Nang Dinh, Nguyen Ngoc Toan. 1999. “Polyaniline layer for iron protection in sulfate medium”. Synthetic Metals 102 (1–3) : 1383–1384.
  • [59] Bernard Maria C, A. Hugot-LeGoff, S. Joiret. 2001. “PANI/SPANI copolymer for the protection of iron against corrosion”. Electrochemical Society Proceedings 22 : 533.
  • [60] Kraljić M, Z. Mandić, LJ Diuć. 2001. „Comparison of polyaniline and poly(otho-ethoaniline) corrosion protection properties”. Electrochemical Society Proceedings 22 : 548.
  • [61] Warren Leslie F, Dennis P. Anderson. 1987. “Polypyrrole Films from Aqueous Electrolytes The Effect of Anions upon Order”. Journal of The Electrochemical Society 134 : 101.
  • [62] Diaz Abigail, F, Keiji K.Kanazawa, Gian Piero Gardini. 1979. “Electrochemical polymerization of pyrrole”. Journal of the Chemical Society, Chemical Communications 14 : 635–636.
  • [63] Naoi Katsuhiko, Masayuki Takeda, Hiroshi Kanno, Masao Sakakura, Akihiro Shimada. 2000. “Simultaneous electrochemical formation of Al2O3/polypyrrole layers (I): effect of electrolyte anion in formation process”. Electrochimica Acta 45 : 3413.
  • [64] Huelser P, Fritz Beck. 1990. “Electrodeposition of polypyrrole layers on aluminium from aqueous electrolytes”. Journal of Applied Electrochemistry 20 : 596.
  • [65] Roux Stephane, Pierre Audebert, Jacques Pagetti, Maxime Roche. 2001. “Design of a new bilayer polypyrrole–xerogel hybrid coating for corrosion protection”. Journal of Materials Chemistry 11 : 3360–3366.
  • [66] Grgur Branimir N, Nedeljko V. Krstajić, Milan V. Vojnovic, Časlav Lacnjevac, Ljiljana M. Gajic-Krstajic. 1998. “The influence of polypyrrole films on the corrosion behavior of iron in acid sulfate solutions”. Progress in Organic Coatings 33 (1) : 1–6.
  • [67] Petitjean Jacques, Salah Aeiyach, Jean Christophe Lacroix, Pierre Camille Lacaze. 1999. “Ultra-fast electropolymerization of pyrrole in aqueous media on oxidizable metals in a one-step process”. Journal of Electroanalytical Chemistry 478 : 92.
  • [68] Truong Van Tan, P.K. Lai PK, Basil T. Moore, Richard Francis Muscat, M. Sarina Russo. 2000. “Corrosion protection of magnesium by electroactive polypyrrole/paint coatings”. Synthetic Metals 110 : 7.
  • [69] Idla Katrin, Olle Inganas, Marek Strandberg. 2000. “Good adhesion between chemically oxidised titanium and electrochemically deposited polypyrrole”. Electrochimica Acta 45 : 2121.
  • [70] Zalewska Tamara, Anna Lisowska-Oleksiak, Swietlana Biallozor, Vitalija Jasulaitiene. 2000. “Polypyrrole films polymerised on a nickel substrate”. Electrochimica Acta 45 : 4031.
  • [71] Herrasti Pilar, Pilar Ocon. 2001. “Polypyrrole layers for steel protection”. Applied Surface Science 172 : 276–284.
  • [72] Troch-Nagels G, R. Winand, A.Weymeersch, L. Renard. 1992. “Electron conducting organic coating of mild steel by electropolymerization”. Journal of Applied Electrochemistry 22 : 756–764.
  • [73] Ferreira Carlos A, Salah Aeiyach, Jean J. Aaron, Pierre C. Lacazae. 1996. “Electrosynthesis of strongly adherent polypyrrole coatings on iron and mild steel in aqueous media”. Electrochimica Acta 41 (11-12) : 1801–1809.
  • [74] Reut Jekaterina, Andres Opik, K. Idla. 1999. “Corrosion behavior of polypyrrole coated mild steel”. Synthetic Metals 102 (13) : 1392–1393.
  • [75] Deslouis Claudeve., B. Garcia-Renaud, N.T.Le Hien. 2001. “Composite oxide/CP or large size anions/CP films as active protective coatings. Case of polypyrrole”. Electrochemical Society Proceedings 22 : 596.
  • [76] Tallman Dennis E, Yong-Quk Pae, GB Bierwagen. 1999. “Conducting polymers and corrosion: polyaniline on steel”. Corrosion 55 (8) : 779–786.
  • [77] Adamczyk Lidia, Paweł J. Kulesza. 2008. “Preparation and Protective Properties of Composite Films of Poly (3, 4-etylenedioxythiophene) with Seteropolyanions on Stainless Steel”. ECS Transactions (The Electrochemical Society, USA), 13 (27) : 85–93.
  • [78] Adamczyk Lidia. 2011. “Właściwości ochronne powłoki kompozytowej: poli (3,4- etylylenodioksytiofen), kwas benzopirolowy oraz fosforomolibdenian niklu (Ni1.5PMo12) osadzonej na stali X20Cr13”. Inżynieria Materiałowa, 32 (4) : 182, 289–293.
  • [79] Adamczyk Lidia, Paweł J. Kulesza. 2011. “Fabrication of composite coatings of 4-(pyrrole-1-yl) benzoate-modified poly-3,4-ethylenedioxythiophene with phosphomolybdate and their application in corrosion protection”. Electrochimica Acta 56 (10) : 3649–3655.
  • [80] Adamczyk Lidia, Krystyna Giza, Agata Dudek. 2014. “Electrochemical preparation of composite coatings of 3, 4-etylenodioxythiophene (EDOT) and 4-(pyrrole-1-yl) benzoic acid (PyBA) with heteropolyanions”. Materials Chemistry and Physics 144 (3) : 418–424.
  • [81] Adamczyk Lidia, Andrzej Krolikowski, Paweł J. Kulesza. 2011. „Ochrona stali X20Cr13 za pomocą powłoki kompozytowej poli(4,3-etylenodioksytiofen) / kwas benzopirolowy / kwas fosforomolibdenowy”. Ochrona przed Korozją 54 (7) : 458–461.
  • [82] Adamczyk Lidia. 2010. „Zastosowanie powłok kompozytowych na bazie poli(3,4-etylenodioksytiofenu), kwasu krzemododekawolframowego i kwasu 4-benzopirolowego do ochrony stali X20Cr13 przed korozją”. Ochrona przed Korozją 53 (4-5) : 282–285.
  • [83] Adamczyk Lidia. 2010. „Dobor parametrów osadzania powłok kompozytowych na bazie poli(3,4-etylenodioksytiofenu) (PEDOT), kwasu benzopirolowego (PyBA) oraz fosforomolibdenianu niklu (Ni1.5PMo12) na odporność korozyjną stali X20Cr13”. Ochrona przed Korozją 53 (11) : 538–541.
  • [84] Adamczyk Lidia, Anna Pietrusiak. 2010. „Wpływ stężenia składników w procesie elektroosadzania na właściwości ochronne powłok PEDOT/PyBA”. Ochrona przed Korozją 53 (11) : 535–538.
  • [85] Adamczyk Lidia, Paweł J. Kulesza, Henryk Bala. 2008. „Electropolymerization of 3,4-ethylenedioxythiophene (EDOT) with 4-(Pyrrole-1-yl) Benzoic Acid (PyBA) at Stainless Steel Electrode: Corrosion Protection Properties”. Fiziko-Chimiceskaja Mechanika Materialov 7 : 368–373.
  • [86] Bai Xiaoxia, The Hai Tran, Demei Yu, Ashokanand Vimalanandan, Xiujie Hu, MichaelRohwerder. 2015. “Novel conducting polymer based composite coatings for corrosion protection of zinc”. Corrosion Science 95 : 110–116.
  • [87] Prabakar Richard S.J., Myoungho Pyo. 2012. “Corrosion protection of aluminum in LiPF6 by poly (3, 4-ethylenedioxythiophene) nanosphere-coated multiwalled carbon nanotube”. Corrosion Science 57 : 42–48.
  • [88] Armelin Elaine, Alvaro Meneguzzi, Carlos A.Ferreira, CarlosAleman. 2009. “Polyaniline, polypyrrole and poly (3, 4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion”. Surface and Coatings Technology 15 : 3763–3769.
  • [89] Aradilla David, Denise Azambuja, Francesc Estrany, Jose I. Iribarren, Carlos A. Ferreira, Carlos Aleman. 2011. “Poly (3, 4-ethylenedioxythiophene) on self-assembled alkanethiol monolayers for corrosion protection”. Polymer Chemistry 2 : 2548–2556.
  • [90] Hou Jian , Guang Zhu, Jingkun Xu, Huajian Liu. 2013. “Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater”. Journal of Materials Science & Technology 29 (7) 678–684.
  • [91] Gopi Dhanaraj, Subramanian Ramya, Durairajan Rajeswari, M.Surendiran, Louis Kavitha. 2014. “Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells”. Colloids and Surfaces B: Biointerfaces 114 (1) : 234–240.
  • [92] Malik Marcin A., Mariusz Galkowski, Henryk Bala, Bożena Grzybowska, Paweł J. Kulesza. 1999. “Evaluation of polyaniline films containing traces of dispersed platinum for protection of stainless steel against corrosion”. Electrochimica Acta 44: 2157–2163.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-323f99db-0b0d-4007-b7ca-227913702717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.