PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the annealing on the microstructure of HVOF deposited coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The objective of this paper is to present how process of the coatings annealing deposited by high velocity oxy-fuel (HVOF) method influence on the microstructure changes. The differences in the microstructure and microhardness after different variants of the annealing in the comparison to the HVOF deposited coats were presented. Design/methodology/approach: Two different coatings: WC-Co and Cr3C2-NiCr deposited on the AK9 substrate by HVOF method were investigated. The coats were annealing at the nitrogen in the conditions as follows: a) T = 550°C, t = 5.5 h, b) T = 500°C, t = 24 h. After, the samples were subjected by using optical (MO) and scanning electron microscopy (SEM). Also the microhardness was determined by Vickers method, the applied load was 200 gram. Findings: The microstructure of the WC-Co and Cr3C2-NiCr coatings was build from the equiaxial grains distributed relatively uniform. Also characteristic was large number of discontinuous, voids and pores, especially in the WC-Co coat. After annealing, both WC-Co and Cr3C2-NiCr coating, the microstructure was more homogenous. It was observed reduction of the pore and voids amount. The microhardness after annealing was almost at the same level as after HVOF deposition. Practical implications: The performed investigations could be useful in the industrial practice and give the information about working WC-Co and Cr3C2-NiCr coats at the elevated temperatures. Originality/value: The HVOF deposited and successive annealed WC-Co and Cr3C22-NiCr coats have more uniform microstructure which could contribute to the improvements of some properties, for example wear resistance.
Rocznik
Strony
95--102
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] M. Richert, M. Książek, B. Leszczyńska-Madej, I. Nejman, R. Grzelka, P. Pałka, The Cr3C2 thermal spray coating on Al-Si substrate, Journal of Achievements in Materials and Manufacturing Engineering 38/1 (2010) 95-102.
  • [2] M. Richert, A. Mazurkiewicz, J. Smolik, Chromium carbide coatings obtained by the hybrid PVD methods, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2011) 145-152.
  • [3] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Multilayer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 170-190.
  • [4] L.A. Dobrzański, L. Wosińska, K. Gołombek, J. Mikuła, Structure of multicomponent and gradient PVD coatings deposited on sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 99-102.
  • [5] K. Lukaszkowicz, L.A. Dobrzański, A. Zarychta, L. Cunha, Mechanical properties of multilayer coatings deposited by PVD techniques onto the bras substrate, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 47-52.
  • [6] J.K.N. Murthy, B. Venkataraman, Abrasive wear behaviour of WC-CoCr and Cr3C2- 20(NiCr) deposited by HVOF and detonation spray process, Surface and Coatings Technology 200 (2006) 2642-2652.
  • [7] T. Sahraoui, N.-E. Fenineche, G. Montavon, Ch. Coddet, Structure and wear behaviour of HVOF sprayed Cr3C2-NiCr and WC - Co coatings, Materials and Design 24 (2003) 309-313.
  • [8] S. Matthews, M. Hyland, B. James, Microhardness variation in relation to carbide development in heat treated Cr3C2-NiCr thermal spray coatings, Acta Materiallia 51 (2003) 4267-4277.
  • [9] G.-Ch. Ji, Ch.-J. Li, Y.-Y. Wang, W.-Y. Li, Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2 - NiCr coating, Surface and Coatings Technology 200 (2006) 6749-6757.
  • [10] C.J. Li, A. Ohmori, Y. Harada, Formation of an amorphous Phase in Thermally Sprayed WC-Co, Journal of Thermal Spray Technology 5 (1996) 69-73.
  • [11] J.M. Guilemany, J.M.de Paco, J. Nutting, J.R. Miguel, Characterization of the W2C phase formed during the High Velocity Oxygen Fuel Spraying of a WC + 12 Pct Co, Metallurgical and Materials Transactions A 30 (1999) 19131921.
  • [12] B.H. Kear, G. Skandan, R.K. Sadangi, Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings, Scripta Materialia 44 (2001) 1703-1707.
  • [13] C.H. Lee, K.O. Min, Effects of heat treatment on the microstructure and properties of HVOF - sprayed Ni-Cr-W-Mo-B alloy coating, Surface and Coatings Technology 132 (2000) 49-57.
  • [14] S. Matthews, B. James, M. Hyland, The role of micro-structure in the mechanism of high velocity erosion of Cr3C2-NiCr thermal coatings: Part 2 - Heat treated coatings, Surface and Coatings Technology 203 (2009) 1094-1100.
  • [15] J. He, E.J. Lavernia, Precipitation phenomenon in nanostructured Cr3C2-NiCr coatings, Materials Science and Engineering A 301 (2001) 69-79.
  • [16] T.A. Taylor, Phase stability of chrome-carbide Ni-Cr coatings in low oxygen environments, Journal of Thermal Spray Technology 12/4 (1975) 790-794.
  • [17] H.C. Lee, J. Gurlad, Hardness and deformation of cermented tungsten carbide, Materials Science Engineering 33 (1978) 125-33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-323e9b1d-b067-40d5-8ac9-5dde2e3b16e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.