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Abstract
Developed by French mathematician Augustin-Louis Cauchy, the classical theory of elasticity is the starting point 
to show the value and the physical reality of quaternions. The classical balance equations for the isotropic, elastic 
crystal, demonstrate the usefulness of quaternions. The family of wave equations and the diffusion equation are a 
straightforward consequence of the quaternion representation of the Cauchy model of the elastic solid. Using the 
quaternion algebra, we present the derivation of the quaternion form of the multiple wave equations. The fundamental 
consequences of all derived equations and relations for physics, chemistry, and future prospects are presented.
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1. Introduction

Hamilton tried for 10 years to create an analog of the complex 
numbers and finally in 1843, while on a walk with his wife, he 
realized that three distinct imaginary units are necessary. He 
carved a new idea on the Broom Bridge in Dublin, which at 
present is immortalized by a commemorative plaque [1]. This 
simplified, trivial, and unfortunately very common opinion 
tells that quaternions were invented as an extension to the 
complex numbers. The genuine, unquestionable Hamilton 
motivation was a very fundamental physics of solids and 
liquids.
The Cauchy classical theory of elasticity was already 
developed in 1822 [2]. The Navier–Stokes equations that 
are central to fluid mechanics were formulated as well. 
In 1828, Poisson [3] studied the elementary waves (the 
longitudinal and transverse). The purpose and beauty of 
Hamilton quaternions was immediately recognized. In 
1869, James Clerk Maxwell wrote [4]: “The invention of the 
calculus of quaternions is a step towards the knowledge of 
quantities related to space which can only be compared for 
its importance, with the invention of triple coordinates by 
Descartes. The ideas of this calculus  ¼  are fitted to be of 
the greatest in all parts of science.” However, despite this, 
all Maxwell attempts to reformulate electromagnetism using 
quaternions were unsuccessful.
In 1885, Neumann [5] gave the proof of the uniqueness of 
solutions of three fundamental boundary-initial value problems 
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for finite elastic, compressible solid. A rigorous completeness 
proof of the Cauchy theory was given by Duhem [6]. Regrettably, 
the Euler and Navier–Stokes equations that are used to quantify 
the motion of a fluid are not yet solved for an unknown velocity 
vector even in incompressible fluids. Since understanding the 
Navier–Stokes equations is considered to be the first step to 
the perception of the elusive phenomenon of turbulence, the 
Clay Mathematics Institute in 2000 made this problem one of its 
seven Millennium Prize problems in mathematics and offered 1 
million US dollars prize to the first person providing a solution 
for a specific statement of the problem. Contrary to the Navier–
Stokes equations, the Cauchy theory of ideal elastic solid is 
well-founded and allows for the advanced analysis of the various 
phenomena. Advanced examination of the Cauchy theory and to 
the same degree, the majority of physical problems cannot be 
reduced to vectorial models. The vector product does not permit 
the formulation of algebra, for example, the division operation is 
not defined [7].
Compared with the calculus of vectors, the quaternions have 
slipped into the realm of obscurity and at present, they are used 
practically only in computation of rotation in every computer 
graphics film studio. In the same way, the calculus of imaginary 
numbers by many is considered as an effective tool, by no 
means the physical reality. Not many scientists expect that they 
will find a deeper understanding of the physics by restating 
basic principles in terms of quaternion algebra. In this article, 
we will discuss that the Hamilton algebra of quaternions, ℍ, and 
Hamilton concept of the four-dimensional space allow us to work 
out many problems, and they are the remedy that can be looked 
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where  and ° denotes scalar multiplication (scalar 
inner product) in ℝ3. Shortly

	 (3)

	 (4)

Equation (3) and relation (4) imply the Euler–Lagrange 
differential equation d 0

d
e e

t
 ∂ ∂

− = ∂ ∂ u u . It means that one can derive 
the vector equation of motion from the scalar relation of 
energy conservation and vice versa. The scalar equation 
(4) and the vector equation (3) (Quattro group) rule the 
deformation in the ideal elastic continua. By the Helmholtz 
decomposition theorem, every deformation can be expressed 
by the compression and twist, and if u belongs to C3 class of 
functions then 0 φ= +u u u , where 0rot 0=u  and div 0φ =u .
Upon acting on Eq. (3) by divergence and rotation operators, 
we decompose it and get the transverse and the longitudinal 
wave equations in the usual form tt xxk=u u :

	 (5)

where and  also .
The Cauchy theory combined with the Helmholtz 
decomposition theorem results in four second-order scalar 
differential equations (5) and implies the transverse and 
longitudinal waves in the Cauchy elastic solid. Relation (4) 
takes the form

	 (6)

Decomposition (Eq. 5) results in four equations: 
0 0 ˆφ σ σ σ= + ⇒ = +u u u  and implies the existence of 

deformation field σ  that represents the twist and compression 
fields as a superposition of a real (scalar compression 0σ ) 
and imaginary (twist vector, σ̂ ) field parts at each point

	 (7)

where the following constraint holds

	 (8)

The foundation of this Quattro grouping in Eq. (7) is the 
Hamilton quaternion algebra ℍ (Section 3). On acting on the 
deformation field s, it allows more advanced exploration of its 
structure, properties, multiple waves, and so on (Sections 4 
and 5).

at as analogous to the widely accepted four-dimensional 
time–space continuum.
The algebra of quaternions owns all laws of algebra with 
unique properties. The essential here are (1) the multiplication 
of the quaternions that are not commutative and (2) they allow 
quantifying twists and compression. Later, we will discuss 
that quaternions are a physical reality. Not only helpful and 
convenient, but the quaternions also allow entering and 
understanding the processes in continua, for example, the 
wave mechanics.
The original arguments to implement the classical mechanics 
equations in the field of wave mechanics were given by 
Kleinert [8]. The Kleinert concept combined with the Cauchy 
model of elastic solid has been analyzed with the arbitrary 
assumption of the complex potential field [9]. Recently, the 
Cauchy theory was rigorously combined with the quaternion 
algebra [10], and such representation of the Cauchy equation 
of motion produced the Klein–Gordon wave equation [11]. 
In this work, the fundamental new results, explicitly the 
deformations and the family of waves in elastic solid, are 
presented.
In the following sections, we will present the rigorous 
derivation of the quaternion representation of the Cauchy 
deformation field (Section 2), the essentials of quaternion 
algebra (Section 3), and the quaternion representation that 
allows considering multiple forms of waves and standing 
waves in ideal elastic solid (Section 4). The final result is 
the vast possibility of waveforms in the elastic continuum 
(Section 5).

2. �The Cauchy Deformation Field Transformed to 
Quattro Group

The Cauchy model of the elastic solid is a mathematical 
idealization of isotropic elastic material [12, 13]. We consider 
a case of an ideal face-centered cubic (FCC) structure 
(Poisson number ν  = 0.25). The small deformation limit 
judges constant1: the density r, the Young modulus, and the 
transverse wave velocity 0.4 const.c Y ρ= =  Solid is a 
closed system of the constant volume 3Ω ⊂ �⊂ℝ3 and to make 
the problem easier we do not consider external fields.
Equation of motion relates displacement u with compression 
(divu) and twist (rot u)

	 (1)

From Eq. (1), the energy per mass unit in the deformation 
field follows [14]
1 Relations among the elastic constants: ( )3 6 1.5K Y Yν= − =

and ( )2 1 2.5Y G Gν= + = × .
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    (14)

It was already shown that splitting Eq. (13) results in: (1) the 
non-linear quaternion wave and (2) the Poisson equation [11]. 
In this work, we show that on splitting Eq. (13) into the system 
of the wave and Poisson equations, the multiple non-linear 
forms of the wave equation follow, that is, the quaternion 
motion equation generates the family of the non-linear waves. 
To do so, we consider the wave showing the energy constnE =
. Subsequently, Eq. (13) can be written as a multisystem:
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where 1n nk λ=  and ( )n nf Eλ =  denotes the wavelength. 
By adding equations in Eq. (15), the momentum balance is 
expressed again by a single partial differential equation (13). 
System (15) is a hyperbolic–elliptic quaternion representation 
of a wave equation (13) and has the solution of the form:

0 0 1 2 3
ˆσ σ φ σ φ φ φ= + = + + + ∈i j k H .	 (16)

The second equation in Eq. (15) is the Poisson equation, 
and it describes compression potential and is a function of 
energy density [11]. Equation (15) must obey constraint (8) 
and require boundary conditions for a solution.

5. �Summary: The Quasi-Stationary Waves in the 
Cauchy Elastic Solid

The aim of our work is to show the usefulness and ontology of 
the quaternions. On combining the Navier–Cauchy model of 
the elastic solid with the quaternion algebra ℚ, we presented 
the approach that allowed the self-consistent interpretation of 
the deformations and the wave phenomena.
The analysis of system (15) in a case when n = 0 shows that 
wave equation is the quaternion Klein–Gordon type equation 
[16] and Poisson equation
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For more details, the particulars related to the processes 
and the physical constants at the Planck scale were already 
published in Danielewski and Sapa [11].
The quasi-stationary wave means that the wave energy is 
constant in an arbitrary volume W and can be treated, for 
example, as the particle. Such a wave and its space evolution 

3. �Quaternions: Essentials of the Quaternion Alge-
bra

We show the basic definitions and formulas of the quaternion 
numbers and functions, and they are limited to those used in 
this work [15]. Let ℝ4 be the four-dimensional Euclidean vector 
space with the orthonormal basis{ }0 1 2 3, , ,e e e e : ( )0 1,0,0,0e = , 

( )1 0,1,0,0e = , ( )2 0,0,1,0e = , and ( )3 0,0,0,1e =  and with 
the three-dimensional vector subspace { }1 2 3span , ,P e e e=

. In practice, the following algebraic notation is used: 
0 1 2 31,  ,  ,  and e e i e j e k= = = = . Thus, an arbitrary quaternion 

q, that is, :q P∈ = ⊗�H , can be written in terms of its basic 
components

( )0 1 2 3 0 1 2 3, , ,q q q q q q q i q j q k= = + + + 	 (9)

and in the form of the ordered pair of a scalar and vector: 
[ ]0 0ˆ ,q q q q q= + =


 as already postulated in Eq. (7). The 

imaginary units obey the following relations:

2 2 2  1, , ,  .i j k ij ji k jk kj i ki ik j= = = − = − = = − = = − = 	
(10)

The multiplication is non-commutative. A conjugate quaternion 
is defined as

*
0 1 2 3 0 ˆq q q i q j q k q q= − − − = − .	 (11)

From Eqs. (9)–(11), we obtain the results: 
3* * 2

0 ii
q q q q q

=
⋅ = ⋅ = ∑

. We will use here the Cauchy–Riemann operator D acting on 
the quaternion-valued functions q. Under the constraint in Eq. 
(7), D equals

0 0ˆ ˆgrad rot , where .Dq q q q q q= + = + 	 (12)

Note that DDq q= ∆  and hence D corresponds physically to 
the gradient in ℝ3. The exponent function has its trigonometric 
representation: ( )0 ˆ ˆ ˆ ˆcos sinqqe e q q q q= + .

4. Quaternion Representation of Wave Mechanics

Adding equations in Eq. (5) and from constraint (8), we get 
quaternion form of the motion equation

2

0 02 2

1 2   where   ˆ
tc
σ σσ σ σ σ∂

+
∂

= ∆ ∆ = + .	 (13)

Since *ˆ ˆ ˆ ˆ ˆ ˆu u u u u u= =− ⋅ = ⋅u u         , where 1 2 3û u i u j u k= + +     and 
( )1 2 3, ,u u u=u    , the overall energy of the deformation field, the 

formula (6), becomes the quaternion form
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might be analyzed based on energy formulae (14). It has 
been shown that one can relate the velocity u  with the 
gradient of the deformation Dσ , Eq. (12). Consequently, the 
energy functional follows [10], and it was shown that there 
exists a multiplayer 0λ ≠  such that ψ  minimizes the resulting 
functional

[ ] ( ) ( ) ( )
2

* * *1 d
2

Q D D V x x
m

ψ ψ ψ ψ ψ λ ψ ψ
Ω

  
= ⋅ + ⋅ + − ⋅  Ω   
∫


   (18)

and ψ  satisfies the differential equation

( )
2

2
V x

m
ψ ψ λψ− ∆ + =


.	 (19)

A constant factor on the right-hand side can be considered 
as extra energy of the wave in the presence of the external 
field V = V(x). For E λ= , Eq. (19) is the time-independent 
Schrödinger-type quaternion equation satisfied by the wave 
in the ground state of the energy E

( )
2

2
V x E

m
ψ ψ ψ− ∆ + =


.	 (20)

It has to be satisfied together with the condition equivalent to 
the constraint in Eq. (8)

0ˆ ˆdiv 0  where  ψ ψ ψ ψ= = + .	 (21)

Thus, the quantum space can be regarded as an analog to 
the elastic solid [9–11].
The analysis of the multisystem in Eq. (15) with constraint 
(8) derived in this work requires that the boundary conditions 
are formulated in the quaternion form. An example of such 
condition was already presented in the case of a closed 
system [11].
Quaternions are much more comfortable than vectors in most 
cases and have huge advantages in the calculation of twist 
(and rotations). We demonstrated that energy-momentum 
and conservation in the elastic Navier–Cauchy continuum 
implies a quaternion form of the multiple wave equations 
and that quaternions can be regarded as the most concise 
form of physical reality. Our derivation provides new evidence 
that there is a rigorously defined mathematical connection 
between classical and wave mechanics. All the obtained 
results support the physical reality of quaternions and allow 
for the interpretation of wave mechanics.
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