PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of Titan yellow dye as a metal ion binding marker for studies on the formation of specific complexes by supramolecular Congo red

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Congo red (CR) and other self-assembling compounds creating supramolecular structures of rod- or ribbon-like architecture form specific complexes with cellulose and also with many proteins, including antibodies bound to the antigen and amyloids in particular. The mechanism of complexation and structure of these complexes are still poorly recognized despite the importance of the problem for medicine. This work proposes the progress in electron microscopy studies of amyloid-dye complexes by labeling supramolecular ligand CR with silver ions as a marker. Silver ions are introduced to CR carried by the strongly binding silver dye Titan yellow, which in addition form comicellar structures with CR. Silver carried by self-assembled dye molecules forms in the resulting metal nanoparticles, making the specific amyloid ligand CR perceptible in EM studies.
Rocznik
Strony
9--17
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Medical biochemistry, Jagiellonian University Medical college, 31-034 Krakow, Kopernika 7, Poland
autor
  • Medical biochemistry, Jagiellonian University Medical college, 31-034 Krakow, Kopernika 7, Poland
autor
  • Medical biochemistry, Jagiellonian University Medical college, 31-034 Krakow, Kopernika 7, Poland
autor
  • Medical biochemistry, Jagiellonian University Medical college, 31-034 Krakow, Kopernika 7, Poland
autor
  • Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Lazarza 16, 31-530 Krakow, Poland,
autor
  • Medical biochemistry, Jagiellonian University Medical college, 31-034 Krakow, Kopernika 7, Poland
autor
  • Medical biochemistry, Jagiellonian University Medical college, 31-034 Krakow, Kopernika 7, Poland
autor
  • Medical biochemistry, Jagiellonian University Medical college, 31-034 Krakow, Kopernika 7, Poland
  • Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239 Krakow, Niezapominajek 8, Poland
autor
  • Department of Measurements and Electronics, AGH University of Science and Technology, 30-059 Krakow, Al. Mickiewicza 30, Poland
autor
  • Institute of Forensic Research, 31-033 Krakow, Westerplatte 9, Poland
Bibliografia
  • 1. Rudyk H, Vasiljevic S, Hennion RM, Birkett CR, Hope J, Gilbert IH. Screening Congo red and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells. J Gen Virol 2000;81:1155–64.
  • 2. Lai L-L, Su F-Y, Lin Y-J, Ho C-H, Wang E. Synthesis and study of azo-dye compounds: various molecular stackings from different polarities of the molecules. Helv Chim Acta 2002;85:1517–22.
  • 3. Rudyk H, Knaggs MH, Vasiljevic S, Hope J, Birkett C, Gilbert IH. Synthesis and evalution of analogues of Congo red as potential compounds against transmissible spongiform encephaopathies. Eur J Med Chem 2003;38:567–79.
  • 4. Spólnik P, Konieczny L, Piekarska B, Rybarska J, Stopa B, Zemanek G, et al. The use of the Congo red-related dye DBACR to recognize the heavy chain-derived abnormality of myeloma immunoglobulins. Arch Immunol Ther Exp (Warsz) 2006;54: 217–21.
  • 5. Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 1994;91:12243–7.
  • 6. Woodcock S, Henrissat B, Sugiyama J. Docking of Congo red to the surface of crystalline cellulose using molecular mechanics. Biopolymers 1995;36:201–10.
  • 7. Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, et al. Propagating structure of Alzheimer’s beta-amyloid(10–35) is parallel beta-sheet with residues in exact register. Proc Natl Acad Sci USA 1998;95:13407–12.
  • 8. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 1999;274:25945–52.
  • 9. Lim A, Makhov AM, Bond J, Inouye H, Connors LH, Griffith JD, et al. Betabellins 15D and 16D, de novo designed beta-sandwich proteins that have amyloidogenic properties. J Struct Biol 2000;130:363–70.
  • 10. Skowronek M, Stopa B, Konieczny L, Rybarska J, Piekarska B, Szneler E, et al. Self-assembly of Congo red – a theoretical and experimental approach to identify its supramolecular organization in water and salt solutions. Biopolymers 1998;46:267–81.
  • 11. Stopa B, Piekarska B, Konieczny L, Rybarska J, Spólnik P, Zemanek G, et al. The structure and protein binding of amyloidspecific dye reagents. Acta Biochim Pol 2003;50:1213–27.
  • 12. Król M, Roterman I, Piekarska B, Konieczny L, Rybarska J, Stopa B, et al. An approach to understand the complexation of supramolecular dye Congo red with immunoglobulin L chain lambda. Biopolymers 2005;77:155–62.
  • 13. Piekarska B, Konieczny L, Rybarska J, Stopa B, Zemanek G, Szneler E, et al. Heat-induced formation of a specific binding site for self-assembled Congo red in the V domain of immunoglobulin L chain lambda. Biopolymers 2001;59:446–56.
  • 14. Spólnik P, Konieczny L, Piekarska B, Rybarska J, Stopa B, Zemanek G, et al. Instability of monoclonal myeloma protein may be identified as susceptibility to penetration and binding by newly synthesized Congo red derivatives. Biochimie 2004;86:397–401.
  • 15. Piekarska B, Skowronek M, Rybarska J, Stopa B, Roterman I, Konieczny L. Congo red-stabilized intermediates in the lambda light chain transition from native to molten state. Biochimie 1996;78:183–9.
  • 16. Glenner GG, Yanes ED, Page DI. The relation of the properties of Congo red-stained amyloid fibrils to the β-conformation. J Histochem Cytochem 1972;20:821–6.
  • 17. Roterman I, Rybarska J, Konieczny L, Skowronek M, Stopa B, Piekarska B, et al. Congo red bound to α-1-proteinase inhibitor as a model of supramolecular ligand and protein complex. Comput Chem 1998;22:61–70.
  • 18. Krol M, Roterman I, Drozd A, Konieczny L, Piekarska B, Rybarska J, et al. The increased flexibility of CDR loops generated in antibodies by Congo red complexation favors antigen binding. J Biomol Struct Dyn 2006;23:407–16.
  • 19. Jagusiak A, Konieczny L, Król M, Marszałek P, Piekarska B, Piwowar P, et al. Intramolecular immunological signal hypothesis revived – structural background of signalling revealed by using Congo red as a specific tool. Mini Rev Med Chem 2014 [Epub available in PubMed].
  • 20. Stopa B, Jagusiak A, Konieczny L, Piekarska B, Rybarska J, Zemanek G, et al. The use of supramolecular structures as protein ligands. J Mol Model 2013;19:4731–40.
  • 21. Rybarska J, Konieczny L, Roterman I, Piekarska B. The effect of azo dyes on the formation of immune complexes. Arch Immunol Ther Exp (Warsz) 1991;39:317–27.
  • 22. Kaszuba J, Konieczny L, Piekarska B, Roterman I, Rybarska J. Bis-azo dyes interference with effector activation of antibodies. J Physiol Pharmacol 1993;44:233–42.
  • 23. Rybarska J, Piekarska B, Stopa B, Zemanek G, Konieczny L, Nowak M, et al. Evidence that supramolecular Congo red is the sole ligation form of this dye for L chain lambda derived amyloid proteins. Folia Histochem Cytobiol 2001;39:307–14.
  • 24. Carter DB, Chou KC. A model for structure-dependent binding of Congo red to Alzheimer beta-amyloid fibrils. Neurobiol Aging 1998;19:37–40.
  • 25. Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and Congo red [corrected]. J Virol 1994;68:2135–41.
  • 26. Klunk WE, Jacob RF, Mason RP. Quantifying amyloid by Congo red spectral shift assay. Methods Enzymol 1999;309:285–305.
  • 27. Chrambach A, Chrambach A, Brining SK. Gel electrophoretic distinction between Congo red nonreactive beta-amyloid (1–42) and beta-amyloid (1–40). Electrophoresis 2000;21: 760–1.
  • 28. Findeis MA. Approaches to discovery and characterization of inhibitors of amyloid beta-peptide polymerization. Biochim Biophys Acta 2000;1502:76–84.
  • 29. King HG, Pruden G. The component of commercial Titan yellow most reactive towards magnesium: its isolatin and use in determining magnesium in silicate minerals. Analyst 1967;92:83–90.
  • 30. Garner RJ. Colorimetric determination of magnesium in plasma or serum by means of Titan yellow. Biochem J 1946;40:828–31.
  • 31. Perez S, Mazeau K. Conformations, structures, and morphologies of celluloses. In: Diversity and functional versatility. Dumitriu S, editor. New York: Marcel Dekker, Inc., 2005:41–157.
  • 32. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011;40:3941–4.
  • 33. Liao H-G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmund H, et al. Facet development during platinum nanocube growth. Science 2014;345:916–9.
  • 34. Azubel M, Koivisto J, Malola S, Bushnell D, Hura GL, Koh AL, et al. Electron microscopy of gold nanoparticles at atomic resolution. Science 2014;345:909–12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32356305-c333-4279-9bca-bfef5aab9503
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.