PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative modeling of rock electrical resistivity under uniaxial loading and unloading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In geotechnical engineering practice, studying the characteristics of rock electrical resistivity under different physical and mechanical environments is important for improving the accuracy of unfavorable geological condition detection. In this study, Dali marble and granite were subjected to cyclic loading and unloading at different peak pressures, and the electrical resistivity of the core samples was continuously monitored. The aim was to derive the electrical resistivity variation patterns of two rocks under cyclic loading and unloading. Then, the theoretical models of electrical resistivity for the two rocks were established through theoretical derivation, and the model equations were consistent with the experimental findings. Finally, a MATLAB program was used for nonlinear fitting of the unloading phase electrical resistivity variation patterns of the rocks to reveal the quantified pressure-electrical resistivity patterns of the two rocks with different lithologies. Based on this, well-performing rock pressure-electrical resistivity relationship models were developed with three parameters: pressure, water content and electrical resistivity. The experimental results can significantly improve the accuracy of stratigraphic state inversion and unfavorable body boundary identification by providing realistic electrical resistivity constraints for electrical resistivity tomography.
Czasopismo
Rocznik
Strony
195--212
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
autor
  • Geotechnical and Structural Engineering Research Center, Shandong University, Jingshi Road, Jinan 250061, Shandong, China
Bibliografia
  • 1. Falcon-Suarez IH, North L, Callow B et al (2020) Experimental assessment of the stress-sensitivity of combined elastic and electrical anisotropy in shallow reservoir sandstones. Geophysics 85(5):Mr271-Mr283. https://doi.org/10.1190/Geo2019-0612.1
  • 2. Garcia AP, Jagadisan A, Rostami A et al (2018) A new resistivitybased model for improved hydrocarbon saturation assessment in clay-rich formations using quantitative geometry of the clay network. Petrophysics 59(3):318-333. https://doi.org/10.30632/ PJV59N3-2018a3
  • 3. Han TC, Liu SB, Xu DH et al (2020) Pressure-dependent cross-property relationships between elastic and electrical properties of partially saturated porous sandstones. Geophysics 85(3):Mr107-Mr115. https://doi.org/10.1190/Geo2019-0477.1
  • 4. He J, Li M, Zhou K et al (2020) Radial resistivity measurement method for cylindrical core samples. Interpret J Sub 8(4):1071-1080. https://doi.org/10.1190/int-2019-0213.1
  • 5. Jia P, Li L, Liu DQ et al (2020) Insight into rock crack propagation from resistivity and ultrasonic wave variation. Theor Appl Fract Mec 109:102758. https://doi.org/10.1016/j.tafmec.2020.102758
  • 6. Jung SH, Yoon HK, Lee JS (2015) Effects of temperature compensation on electrical resistivity during subsurface characterization. Acta Geotech 10(2):275-287. https://doi.org/10.1007/ s11440-014-0301-8
  • 7. Kahraman S, Alber M (2014) Electrical impedance spectroscopy measurements to estimate the uniaxial compressive strength of a fault breccia. B Mater Sci 37(6):1543-1550. https://doi.org/ 10.1007/s12034-014-0109-z
  • 8. Kahraman S, Yeken T (2010) Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks. B Mater Sci 33(6):731-735
  • 9. Kolah-kaj P, Kord S, Soleymanzadeh A (2021) The effect of pressure on electrical rock typing, formation resistivity factor, and cementation factor. J Petrol Sci Eng 204:108757. https://doi.org/ 10.1016/j.petrol.2021.108757
  • 10. Kowalczyk S, Zawrzykraj P, Mieszkowski R (2015) Application of electrical resistivity tomography in assessing complex soil conditions. Geol Q 59(2):367-372. https://doi.org/10.7306/gq.1172
  • 11. Kumar M, Sok R, Knackstedt MA et al (2010) Mapping 3D pore scale fluid distributions: how rock resistivity is influenced by wettability and saturation history. Petrophysics 51(2):102-117
  • 12. Li KW (2011) Interrelationship between resistivity index, capillary pressure and relative permeability. Transp Porous Med 88(3):385-398. https://doi.org/10.1007/s11242-011-9745-6
  • 13. Li XC, Zhang Q (2019) Study on Damage evolution and resistivity variation regularities of coal mass under multi-stage loading. Appl Sci-Basel 9(19):4124. https://doi.org/10.3390/app9194124
  • 14. Li HT, Deng SG, Wang YX et al (2021) Study on identification method of gas-bearing carbonate reservoirs based on joint acoustic-resistivity experiments-an example from the Sichuan Basin of China. Explor Geophys 52(4):475-483. https://doi.org/ 10.1080/08123985.2020.1838242
  • 15. Liu ZY, Li SC, Liu B et al (2017) 3D cross-hole resistivity inversion imaging of surrounding rock based on distance weighting constraint algorithm. Chinese J Geot Eng 39(4):652-661. https:// doi.org/10.11779/CJGE201704009
  • 16. Luo X, Gong S, Huo ZG et al (2019) Application of comprehensive geophysical prospecting method in the exploration of coal mined-out areas. Adv Civ Eng 2019:2368402. https://doi.org/ 10.1155/2019/2368402
  • 17. Ozsan A, Karpuz C (1996) Geotechnical rock-mass evaluation of the Anamur dam site. Turk Eng Geol 42(1):65-70. https://doi.org/ 10.1016/0013-7952(95)00065-8
  • 18. Permyakov ME, Manchenko NA, Duchkov AD et al (2017) Laboratory modeling and measurement of the electrical resistivity of hydrate-bearing sand samples. Russ Geol Geophys 58(5):642-649. https://doi.org/10.1016/j.rgg.2017.04.005
  • 19. Rekapalli R, Sarma VS, Phukon P (2015) Direct resistivity measurements of core sample using a portable in-situ DC resistivity meter in comparison with HERT data. J Geol Soc India 86(2):211-214. https://doi.org/10.1007/s12594-015-0300-x
  • 20. Ryu HH, Hong CH, Cho GC (2020) Electrical resistivity of a jointed rock mass with an anomaly. J Appl Geophys 183:104206. https://doi.org/10.1016/j.jappgeo.2020.104206
  • 21. Stepisnik U, Mihevc A (2008) Investigation of structure of various surface karst formations in limestone and dolomite bedrock with application of the electrical resistivity imaging. Acta Carso-logica 37(1):133-140
  • 22. Su O, Momayez M (2017) Indirect estimation of electrical resistivity by abrasion and physico-mechanical properties of rocks. J Appl Geophys 143:23-30. https://doi.org/10.1016/j.jappgeo. 2017.05.006
  • 23. Su MX, Li CC, Xue YG et al (2022) Engineering application of fuzzy evaluation based on comprehensive weight in the selection of geophysical prospecting methods. Earth Sci Inform 15(1):105-123. https://doi.org/10.1007/s12145-021-00701-7
  • 24. Sun Q, Zhu SY, Xue L (2015) Electrical resistivity variation in uniaxial rock compression. Arab J Geosci 8(4):1869-1880. https://doi.org/ 10.1007/s12517-014-1381-3
  • 25. Tariq Z, Mahmoud M, Al-Youssef H, Khan MR (2020) Carbonate rocks resistivity determination using dual and triple porosity conductivity models. Petroleum 6(1):35-42
  • 26. Wang YH, Liu YF, Ma HT (2012) Changing regularity of rock damage variable and resistivity under loading condition. Safety Sci 50(4):718-722. https://doi.org/10.1016/j.ssci.2011.08.046
  • 27. Yin DH, Xu QJ (2020) Comparison of sandstone damage measurements based on non-destructive testing. Materials 13(22):5154. https://doi.org/10.3390/ma13225154
  • 28. Yue WZ, Tao G, Chai XY et al (2011) Digital core approach to the effects of clay on the electrical properties of saturated rocks using lattice gas automation. Appl Geophys 8(1):11-17. https://doi.org/ 10.1007/s11770-010-0267-8
  • 29. Zhou WF, Beck BF, Adams AL (2002) Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ Geol 42(8):922-928. https://doi.org/10.1007/ s00254-002-0594-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32351f9b-9486-4334-bc7e-ea633342507a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.