Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Although significant progress has been made in the production of biocomposites, persistent challenges remain in the processing, distribution and arrangement of natural fibres. These problems stem mainly from the lack of standardised methods for fibre processing, insufficient access to specialised equipment and time-consuming preparation processes. This work breaks new ground by developing a PLA biocomposite reinforced with a fabric of untreated date palm fibres, eliminating costly pre-treatment steps. The digitally controlled hot compression method ensures optimal interfacial adhesion, validated by SEM analysis. The main results of this work reveal a significant improvement in mechanical properties, they show a 24% improvement in Young’s modulus (4.20 GPa) and a 31% increase in tensile strength (80 MPa) with 10% fibers, combined with a 15% reduction in density. Fiber/matrix adhesion, validated by SEM, explains these performances, combined with a reduction in costs and environmental impact. The reproducibility of the processes and the biodegradability of the material make it a sustainable solution for light structural applications. The minor defects identified open up avenues for industrial optimisation.
Wydawca
Rocznik
Tom
Strony
302--312
Opis fizyczny
Bibliogr. 26 poz., fig.
Twórcy
autor
- Laboratoire Mécanique, productique et énergie , ENSIT , Université of Tunis, Tunisie
autor
- Laboratoire Physique Mathématique, Modélisation Quantique Et Conception Mécanique, Institut Préparatoire D’ingénierie De Nabeul, Université De Carthage, Tunisie
autor
- Laboratoire Physique Mathématique, Modélisation Quantique Et Conception Mécanique, Institut Préparatoire D’ingénierie De Nabeul, Université De Carthage, Tunisie
autor
- Laboratoire Physique Mathématique, Modélisation Quantique Et Conception Mécanique, ENSIT , Université of Tunis, Tunisie
Bibliografia
- 1. Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly-lactic acid (PLA) and kenaf fibers. Composites Science and Technology, 2008; 68(3), 424–432.
- 2. Poilâne, C., Cherif, E., Richard, F., Vivet, A., Ben Doudou, B., & Chen, J. Polymer reinforced by flax fibres as a viscoelastoplastic material. Composites Part A: Applied Science and Manufacturing, 2014; 63, 100–112.
- 3. Pietruszka, B., Gołębiewski, M., Lisowski, P. Characterization of Hemp-Lime Bio-Composite. IOP Conf. Series: Earth and Environmental Science 2019; 290, 012027.
- 4. Sivaranjana, P., Arumugaprabu, V. A brief review on mechanical and thermal properties of banana fiber-based hybrid composites. SN Appl. Sci. 2021; 3, 176.
- 5. Awad, S., Hamouda, T., Midani, M., Katsou E., Fan M. Polylactic acid (PLA) reinforced with date palm sheath fiber bio-composites: evaluation of fiber density, geometry, and content on the physical and mechanical properties. Journal of Natural Fibers, 2023; 20(1), 2143979. https://doi.org/10.1080/15440478.2022.2143979.
- 6. Ghoria, S. W., Rao, G. S., Rajh, A. A. Investigation of physical, mechanical properties of treated date palm fibre and kenaf fibre reinforced epoxy hybrid composites. Journal of Natural Fibers, 2022; 20(1), 2145406.
- 7. Al-Otaibi, M., Alothma, O., Alrashed, M., Anis, A., Naveen, J., Jawaid, M. Characterization of date palm fiber-reinforced different polypropylene matrix. Polymers 2020; 12, 597.
- 8. Lee, J.-H., Kim, D. H., Ryu, Y., Kim, K. H., Jeong, S. H., Kim, T. Y., Cha, S. W. Mechanical properties of biocomposites using polypropylene and sesame oil cake. Polymers, 2021; 13(10), 1602. https://doi.org/10.3390/polym13101602.
- 9. Maqsood, N., Rimasauskas, M. Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Composites Part C: Open Access 2021; 4, 100112.
- 10. Trivedi, A. K., Gupta, M. K., & Singh, H. PLA based biocomposites for sustainable products: A review. Advanced Industrial and Engineering Polymer Research. 2023. https://doi.org/10.1016/j.aiepr.2023.02.002.
- 11. Masri, T., Ounis, H., Sedira, L., Kaci, A., Benchabane, A. Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Construction and Building Materials, 10 March 2018; 164, 410–418.
- 12. Zwawi, M. A review on natural fiber bio-composites, surface modifications and applications. Molecules, 2021; 26(2), 404. https://doi.org/10.3390/molecules26020404.
- 13. Alwekara, S., Yeolea, P., Kumarc, V., Hassenc, A. A., Kuncc, V., Vaidyaa, U. K. Melt extruded versus extrusion compression molded glass-polypropylene long fiber thermoplastic composites. Composites Part A: Applied Science and Manufacturing May 2021; 144, 106349.
- 14. Tossou, E. Développement de nouveaux composites hybrides renforcés par des fibres de carbone et de lin : Mise en œuvre et Caractérisation mécanique [Thèse de doctorat, Université de Normandie]. 2019.
- 15. Satyanarayana, K. G., Ramos, L. P., Wypych, F. Comparative study of Brazilian natural fibers and their composites with others. In S. Thomas et al. (Eds.), Natural Fibre Reinforced Polymer Composites 2009; 473–522. Philadelphia, PA: Old City Publishing.
- 16. ISO 527-1:2012. Plastiques – Détermination des propriétés en traction – Partie 1: Principes généraux. 2012.
- 17. Auras, R., Harte, B., Selke, S. An overview of polylactides as packaging materials. Macromolecular Bioscience, 2004; 4(9), 835–864.
- 18. Farah, S., Anderson, D. G., Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review. Advanced Drug Delivery Reviews, 2016; 107, 367–392.
- 19. Garlotta, D., Doane, W., Shogren, R., Lawton, J., Willett, J. L. Mechanical and thermal properties of poly (lactic acid) composites. Journal of Polymers and the Environment, 2003; 11(4), 63–84.
- 20. Hamad, K., Kaseem, M., Deri, F. Effect of recycling on the mechanical behaviour of poly (lactic acid). Polymer Degradation and Stability, 2018; 147, 76–85.
- 21. Lim, L. T., Auras, R., et al. Processing technologies for poly (lactic acid). Progress in Polymer Science, 2008; 33(8), 820–852.
- 22. Saeidlou, S., Huneault, M. A., et al. Poly (lactic acid) crystallization. Progress in Polymer Science, 2012; 37(12), 1657–1677.
- 23. Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M. T. Potential of natural fiber reinforced polymer composites in additive manufacturing. Composites Part A: Applied Science and Manufacturing, 2016; 83, 1–12.
- 24. Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., Asyraf, M. R. M. Potential of natural fiber reinforced polymer composites in sandwich structures: a review on its mechanical properties. Polymers, 2021; 13(3), 423. https://doi.org/10.3390/polym13030423.
- 25. Faruk, O., Bledzki, A. K., Fink, H. P., Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012; 37(11), 1552–1596.
- 26. Al-Oqla, F. M., Sapuan, S. M. Date palm fibres: A review of their properties and applications. Journal of Natural Fibers 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-323509aa-34b6-452e-aca3-9cc96efe79e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.