PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Selected Parameters on Ash Particle Trajectories When Modelling Deposition on Superheater Tubes in Pulverised Coal Boilers Using Fluent Code

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Widely used CFD codes enable modelling of PC boilers operation. One of the areas where these numerical simulations are especially promising is predicting deposition on heat transfer surfaces, mostly superheaters. The basic goal of all simulations is to determine trajectories of ash particles in the vicinity of superheater tubes. It results in finding where on the surface the tube will be hit by particles, and what diameter and mass flow of the particles are. This paper presents results of CFD simulations for a single tube and a bundle of in-line tubes as well. It has been shown that available parameters like ash particle density, shape factor, reflection coefficients affect the trajectories in a different way. All the simulations were carried out with Fluent code of Ansys software.
Rocznik
Strony
305--316
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Silesian University of Technology, Department of Industrial Informatics, ul. Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, ul. Konarskiego 18, 44-101 Gliwice, Poland
Bibliografia
  • 1. Bouris D., Bergeles G., 1996. Particle-surface interactions in heat exchanger fouling. Journal of Fluid Engineering, 118, 574-581.
  • 2. Dong M., Li S., Xie J., Han J., 2012. Experimental Studies on the Normal Impact of Fly Ash Particles with Planar Surfaces. Energies, 6, 3245-3262. DOI:10.3390/en6073245.
  • 3. Epple B., Fiveland W., Krohmer B., Richards G., Benim A.C., 2005. Assesment of two-phase flow models for the simualtion of pulverised coal combustion. Clean Air: International Journal on Energy for a Clean Environment, 6, 267-287. DOI: 10.1615/InterJEnerCleanEnv.v6.i3.50.
  • 4. Fan J.R., Zha X.D., Sun P., Cen K.F., 2001. Simulation of ash deposit in a pulverized coal-fired boiler. Fuel, 80, 645-654. doi.org/10.1016/S0016-2361(00)00134-4.
  • 5. Forstner M., Hohmeister G., Joller M., Dahl J., Braun M., Kledittzsch S., Schaler R., Obernberger I., 2006. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers. Progress in Computational Fluid Dynamics, 6, 4/5, 248-261. DOI: 10.1504/PCFD.2006.010034.
  • 6. Haider A., Levenspiel O., 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Techn., 58, 63-70. doi.org/10.1016/0032-5910(89)80008-7.
  • 7. Huang L.Y., NormanJ.S., Pourkashanian M., Williams A., 1996. Prediction of ash deposition on superheater tubes from pulverized coal combustion. Fuel, 75, 3, 271-279. doi.org/10.1016/0016-2361(95)00220-0.
  • 8. Israel R., Rosner D.E., 1982. Use of A Generalized Stokes Number to Determine the Aerodynamic Capture Efficency of Non-Stokesian Particles from a Compressible Gas Flow. Aerosol Science and Technology, 2:1, 45-51.
  • 9. Kaer S.K., Resendahl L., Adamsen P., 2001. A particle deposition model applicable to full-scale boiler simulations: sub-model testing. Proceedings of FEDSM’01. ASME Fluids Engineering Division Summer Meeting. New Orleans, USA, May 29-June 1, 2001, 1-6.
  • 10. Kaer S.K., Rosendhal L., Baxter L.L., 2006. Towards a CFD-based mechanistic deposition formation model for straw-fired boilers. Fuel, 85, 5-6, 833-848. doi.org/10.1016/j.fuel.2005.08.016.
  • 11. Lasurdo M., 2009. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model. PhD Thesis. TU Delft, Holandia.
  • 12. Losurdo M., Bertrand C., Spliethoff H., 2007. A Lagrangian particle CFD post-processor dedicated to particle adhesion/deposition. Proceedings of 7th International Conference on Heat Exchanger Fouling and Cleaning, Tomar, Portugal, July 1 - 6.
  • 13. Lee F.C.C., Lockwood F.C., 1999. Modelling ash deposition in pulverized coal-fired applications. Prog. Energy Combust. Sci., 25, 117-132. doi.org/10.1016/S0360-1285(98)00008-2.
  • 14. Ma Z., Iman F., Lu P., Sears R., Kong L., Rokanuzzman A.S., McCollor D.P., Benson S.A., 2007. A comprehensive slagging and fouling prediction tool for coal-fired boilers and its validation/application. Fuel Processing Technology, 88, 1035-1043. doi.org/10.1016/j.fuproc.2007.06.025
  • 15. Magda A., Magda S.I., Strelow M., Muller H., Leithner R., 2011. CFD Modelling of ash deposits in coal-fired power plants. Proceedings of International Conference on Heat Exchanger Fouling and Cleaning-2011. June 05-10, 2011, Crete Island, Greece.
  • 16. Morsi S.A., Alexander A.J., 1972. An investigation of particle trajectories in two-phase flow system. J. Fluid Mech. 55, 2, 193-208. doi.org/10.1017/S0022112072001806.
  • 17. Mueller Ch., Selenius M., Theis M., Skrifvars B.J., Backman R., Hupa M., Tran H., 2005. Deposition behavior of molten alkali-rich fly ashes-development of a submodel for CFD applications. Proceeding of the Combustion Institute, 30, 2, 2991-2998. http://dx.doi.org/10.1016/j.proci.2004.08.116,
  • 18. Orłowski P., 1972. Kotły parowe. WNT, Warszawa, 230-234 (in Polish).
  • 19. Rushdi A., Gupta R., Sharma A., Holocmbe D., 2005. Mechanistic prediction of ash deposition in a pilot-scale test facility. Fuel, 84, 1246-1258. DOI: 10.1016/j.fuel.2004.08.027.
  • 20. Tomeczek J., Wacławiak K., 2009. Two-dimensional modelling of deposits formation on platen superheaters in pulverized coal boilers. Fuel, 88, 8, 1466-1471. DOI:10.1016/j.fuel.2012.02.007.
  • 21. Wacławiak K., 2010. Numerical investigations into influence of flow direction of flue gas on formation of powder deposits onto a single horizontal tube. Chem. Process Eng., 31, 2, 225-236.
  • 22. Wacławiak K., Kalisz S., 2010. Practical aspects of modeling of deposit formation from sticky ash particles at inline superheater bundles. Rynek energii, 6(91), 129-134.
  • 23. Wacławiak K., Kalisz S., 2012. A practical numerical approach for prediction of particulate fouling in PC boilers. Fuel, 97, 38-48. doi.org/10.1016/j.fuel.2012.02.007.
  • 24. Wang H., Harb J.N., 1997. Modeling af ash deposition in large-scale combustion facilities burning pulverized coal. Prog. Energy Combust. Sci., 23, 267-282. doi.org/10.1016/S0360-1285(97)00010-5.
  • 25. Weber R., Mancini M., Schaffel-Mancini N., Kupka T., 2013. On predicting the ash behaviour using Computational Fluid Dynamics. Fuel Process. Technol., 105, 113-128. DOI:10.1016/j.fuproc.2011.09.008
  • 26. Weber R., Mancini N.S., Mancini M., Kupka T., 2013. Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics. Fuel, 108, 586–596.
  • 27. Yang Y.B., Sharifi V.N., Swithenbank J., Ma L., Darvell L.I., Jones J.M., Pourkashanian M., Williams A., 2008. Combustion of a single particle of biomass. Energy Fuels, 22, 306-316. DOI: 10.1021/ef700305r.
  • 28. Yilmaz S., Cliffe K.R. 2000. Particle deposition simulation using the CFD code FLUENT. J. Inst. Energy, 73, 65-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-322f58ef-b873-4061-9a6f-614bbca96815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.