Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this research work, thermal decomposition and kinetic analysis of pure and contaminated imidazolium based ionic liquid (IL) has been investigated. As thermal decomposition and kinetics evaluation plays a pivotal role in effective process design. Therefore, thermal stability of pure 1-butyl-2,3-dimethylimidazolium chloride (BDMIMCl) was found to be higher than the sample of IL with the addition of 20% (wt.) NH4Cl as an impurity. The activation energy of thermal degradation of IL and other kinetic parameters were determined using Coats Redfern method. The activation energy for pure IL was reduced in the presence of NH4Cl as contaminant i.e., from 58.7 kJ/mol to 46.4 kJ/mol.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
122--125
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- King Abdul Aziz University, Department of Chemical & Materials Engineering, P.O. Box 80200, Jeddah, Saudi Arabia
- University of the Punjab, Institute of Chemical Engineering & Technology, Lahore-54590, Pakistan
Bibliografia
- 1. Endres, F., MacFarlane, D. & Abbott, A. (2008). Electrodeposition from Ionic Liquids. (1st ed.). Germany: Wiley-VCH.
- 2. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K. & Brennecke, J.F. (2004). Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data, 49, 954–964. DOI: 10.1021/je034261a.
- 3. Hao, Y., Peng, J., Hu, S., Zhai, J. & Li, M. (2010). Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA-MS analysis and DFT calculations. Therm. Acta, 501, 78–83. DOI: 10.1016/j.tca.2010.01.013.
- 4. Seddon, K.R., Stark, A. & María-José, T. (2000). Influence of chloride, water and organic solvents on the physical properties of ionic liquids. Pure & Appl. Chem. 72, 2275–2287. DOI: 10.1351/pac200072122275.
- 5. Hagiwara, R. & Ito, Y. (2000). Room temperature ionic liquids of alkyl imidazolium cations and fluoro anions. J. Fluorine Chem. 105, 221–227. DOI: 10.1016/S0022-1139(99)00267-5.
- 6. Stevanovic, S. & Gomes, M.F.C. (2013). Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl--1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafl uoroethyl)trifl uorophosphate (eFAP) ionic liquids. J. Chem. Therm. 59, 65–71. DOI: 10.1016/j.jct.2012.11.010.
- 7. Ngo, H.L., LeCompte, K., Hargens, L. & McEwen, A. B. (2000). Thermal properties of imidazolium ionic liquids. Therm. Acta. No. 357–358, 97–102. DOI: 10.1016/S0040-6031(00)00373-7.
- 8. Joglekar, H.G., Rahman, I. & Kulkarni, B.D. (2007). The Path Ahead for Ionic Liquids. Chem. Eng. Technol., 30, 819–828. DOI: 10.1002/ceat.200600287.
- 9. Muhammad, A., Abdul Mutalib, M.I., Wilfred, C.D., Murugesan, T. & Shafeeq, A. (2008). Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafl uoroborate, hexafl uorophosphate and bis(trifl uoromethylsulfonyl) imide anions. J. Chem. Therm. 40, 1433–1438. DOI: 10.1016/j.jct.2008.04.016.
- 10. Kamavaram, V. & Reddy, R.G. (2008). Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int. J. Therm. Sci. 47, 773–777. DOI: 10.1016/j.ijthermalsci.2007.06.012.
- 11. Kosmulski, M., Gustafsson, J. & Rosenholm, J.B. (2004). Thermal stability of low temperature ionic liquids revisited. Therm. Acta. 412, 47–53. DOI: 10.1016/j.tca.2003.08.022.
- 12. Fox, D.M., Gilman, J.W., De Long, H.C. & Trulove, P.C. (2005). TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazoliumtetrafl uoroborate and the thermal effects of contaminants. J. Chem. Therm. 37, 900–905. DOI: 10.1016/j.jct.2005.04.020.
- 13. Lazzús, J.A. (2012). A group contribution method to predict the thermal decomposition temperature of ionic liquids. J. Mol. Liquids 168, 87–93. DOI: 10.1016/j.molliq.2012.01.011.
- 14. Jankovic´, B., Mentus, S. & Jankovic´, M. (2008). A kinetic study of the thermal decomposition process of potassium meta bisulfite: Estimation of distributed reactivity model. J. Phys. Chem. Solids 69, 1923–1933. DOI: 10.1016/j.jpcs.2008.01.013.
- 15. Lu, C., Song, W. & Lin, W. (2009). Kinetics of biomass catalytic pyrolysis. Biotechn. Adv. 27, 583–587. DOI: 10.1016/j.biotechadv.2009.04.014.
- 16. Zhang, Z. & Reddy, R.G. (2002). Thermal stability of ionic liquids, TMS annual meeting.
- 17. Tonbul, Y. & Yurdakoc, K. (2001). Thermogravimetric Investigation of the Dehydration Kinetics of KSF, K10 and Turkish Bentonite. Turk J. Chem. 25, 333–339. DOI: 10.1080/22243682.2013.871210.
- 18. Kroon, M.C., Buijs, W., Peters, C.J. & Geert-Jan, W. (2007). Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Therm. Acta 465, 40–47. DOI: 10.1016/j.tca.2007.09.003.
- 19. Manikandan, G., Rajarajan, G., Jayabharathi, J. & Thanikachalam, V. (2011). Structural effects and thermal decomposition kinetics of chalcones under non-isothermal conditions. A. J. Chem., In Press. DOI: 10.1016/j. arabjc.2011.06.029.
- 20. Yao, F., Wu, Q., Lei, Y., Guo, W. & Xu, Y. (2008). Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysi. Polym. Deg. Stabil. 93, 90–98. DOI: 10.1016/j. polymdegradstab.2007.10.012.
- 21. Omrani, A. & Hasankola, S.M.M. (2012). Kinetic study on solid state thermal degradation of epoxy nanocomposite containing Octasilane polyhedral oligomeric silsesquioxane. J. Non-Crystalline Sol. 358, 1656–1666. DOI: 10.1016/j.jnoncrysol. 2012.04.036.
- 22. Meng, X., Huang, Y., Yu, H. & Lv, Z. (2007). Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polym. Deg. Stabil. 92, 962–967. DOI: 10.1016/j.polymdegradstab.2007.03.005.
- 23. Vasconcelos, G. da C., Mazur, R.L., Ribeiro, B., Botelho, E.C. & Costa, M.L. (2014). Evaluation of Decomposition Kinetics of Poly (Ether-Ether-Ketone) by Thermogravimetric Analysis. Mater. Res. 17(1), 227–235. DOI: 10.1590/S1516-14392013005000202.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-322c784e-43dc-4e31-91f1-b63ce79c3b41