PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grid Search of Convolutional Neural Network model in the case of load forecasting

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Convolutional Neural Network (CNN) model is one of the most effective models for load forecasting with hyperparameters which can be used not only to determine the CNN structure and but also to train the CNN model. This paper proposes a frame work for Grid Search hyperparameters of the CNN model. In a training process, the optimalmodels will specify conditions that satisfy requirement for minimum of accuracy scoresof Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). In the testing process, these optimal models will be used to evaluate the results along with all other ones. The results indicated that the optimal models have accuracy scores near the minimum values. Load demand data of Queensland (Australia) and Ho Chi Minh City (Vietnam) were utilized to verify the accuracy and reliability of the Grid Search framework.
Rocznik
Strony
25--36
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
  • Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
Bibliografia
  • [1] Walther J., Spanier D., Panten N., Abele E., Very short-term load forecasting on factory level - A machine learning approach, Procedia CIRP, vol. 80, pp. 705–710 (2019).
  • [2] Aydarous A. A., Elshahed M. A., Hassan M. M. A., Short-Term Load Forecasting Approach Based on Different Input Methods of One Variable: Conceptual and Validation Study, 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, pp. 179–184 (2018).
  • [3] Raza M. Q., Khosravi A., A review on artificial intelligence based load demand forecasting techniquesfor smart grid and buildings, Renew. Sustain. Energy Rev., vol. 50, pp. 1352–1372 (2015).
  • [4] Walther J., Spanier D., Panten N., Abele E., Very short-term load forecasting on factory level - A machine learning approach, Procedia CIRP, vol. 80, pp. 705–710 (2019).
  • [5] Khan S., Javaid N., Chand A., Abbasi R. A., Khan A. B. M., Faisal H. M., Forecasting day, week andmonth ahead electricity load consumption of a building using empirical mode decomposition and extreme learning machine, 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC), Tangier, Morocco, pp. 1600–1605 (2019).
  • [6] Joshi M., Singh R.,Short-term load forecasting approaches: A review, International Journal of Recent Engineering Research and Development (IJRERD), no. 01, pp. 9–17 (2015).
  • [7] Cao Z., Member S., Wan C., Zhang Z.,Hybrid Ensemble Deep Learning for Deterministic and Probabilistic Low-voltage Load Forecasting, IEEE Trans. Power Syst., p. 1 (2019).
  • [8] Yu Y., Ji T. Y., Li M. S., Wu Q.H.,Short-term Load Forecasting Using Deep Belief Network with Empirical Mode Decomposition and Local Predictor, 2018 IEEE Power and Energy Society General Meeting (PESGM), Portland, OR, pp. 1–5 (2018).
  • [9] Yang J., Wang Q., A Deep Learning Load Forecasting Method Based on Load Type Recognition, 2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, pp. 173–177 (2018).
  • [10] Krishnakumari K., Sivasankar E., Radhakrishnan S.,Hyperparameter tuning in convolutional neural networks for domain adaptation in sentiment classification (HTCNN-DASC), Soft Comput., vol. 24,no. 5, pp. 3511–3527 (2020).
  • [11] Subramanian S. V., Rao A. H., Deep-learning based time series forecasting of go-around incidents inthe national airspace system, AIAA Model. Simul. Technol. Conf. 2018, no. 209959 (2018).
  • [12] Zahid M.et al., Electricity price and load forecasting using enhanced convolutional neural networkand enhanced support vector regression in smart grids, Electronics, vol. 8, no. 2, pp. 1–32 (2019).
  • [13] Nurshazlyn Mohd Aszemi, Dhanapal Durai Dominic Panneer Selvam, Hyperparameter optimizationin convolutional neural network using genetic algorithms, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 6, pp. 269–278 (2019)
  • [14] Brownlee J.,Deep Learning for Time Series Forecasting, Ebook (2019).
  • [15] https://keras.io/optimizers/
  • [16] Brownlee J.,Deep Learning with Python, Ebook (2019).
  • [17] Chen K., Chen K., Wang Q., He Z., Hu J., He J., Short-Term Load Forecasting With Deep Residual Networks, IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3943–3952 (2019).
  • [18] Jojo Moolayil, Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python, Apress (2018).
  • [19] Xishuang Dong, Lijun Qian, Lei Huang, Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach, IEEE Int. Conf. Big Data Smart Comput., pp. 119–125 (2017).
  • [20] Dong X., Qian L., Huang L., A CNN based bagging learning approach to short-term load forecasting in smart grid, 2017 SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, San Francisco, CA, 2017, pp. 1–6 (2017).
  • [21] Voß M., Bender-Saebelkampf C., Albayrak S., Residential Short-Term Load Forecasting Using Convolutional Neural Networks, 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, 2018, pp. 1–6 (2018).
  • [22] Amarasinghe K., Marino D. L., Manic M., Deep neural networks for energy load forecasting, IEEE Int. Symp. Ind. Electron., pp. 1483–1488 (2017).
  • [23] Koprinska I., Wu D., Wang Z.,Convolutional Neural Networks for Energy Time Series Forecasting, Proc. Int. Jt. Conf. Neural Networks, pp. 1–8 (2018), DOI: 10.1109/IJCNN.2018.8489399.
  • [24] Valentino Zoccaet al., Python Deep Learning, Packt Publishing (2019).
  • [25] https://www.aemo.com.au/
  • [26] Haiqing Liu, Weijian Lin, Yuancheng Li, Ultra-short-term wind power prediction based on copulafunction and bivariate EMD decomposition algorithm, Archives of Electrical Engineering, vol. 69,no. 2, pp. 271–286 (2020).
  • [27] Wang Y., Ma X., Wang F., Hou X., Sun H., Zheng K., Dynamic electric vehicles charging load allocation strategy for residential area, Archives of Electrical Engineering, vol. 67, no. 3, pp. 641–654 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-322bec54-7a23-42eb-9fed-ad801a8004e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.