PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlocal strain gradient‑based quasi‑3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An efficient numerical quasi-3D beam model is introduced to analyze the effect of carbon nanotube (CNT) agglomeration on the nonlinear dynamical stability characteristics of agglomerated beams at microscale made of agglomerated CNT-reinforced nanocomposites. For this objective, the constructive material properties are estimated based upon a micromechanical homogenization scheme containing only two parameters to capture the associated agglomeration of randomly oriented CNTs, while the nonlocal strain gradient continuum theory of elasticity is enrolled to apprehend various size dependency features. The unconventional nonlinear governing differential equations of motion are solved numerically via the shifted Chebyshev-Gauss-Lobatto discretization pattern together with the pseudo-arc-length continuation strategy. The size-dependent frequency-load-deflection characteristic curves are traced corresponding to different degrees of agglomeration including complete and partial ones. It is revealed that for an agglomerated CNT-reinforced nanocomposite microbeam in which the most CNTs are inside clusters, a higher value of the cluster volume fraction results in to reduce the significance of the softening and stiffing characters associated with the nonlocal and strain gradient small-scale effects, respectively. However, for an agglomerated CNT-reinforced nanocomposite microbeam in which the most CNTs are outside clusters, increasing the value of the cluster volume fraction plays an opposite role in the size dependency features.
Rocznik
Strony
art. no. e21, 2023
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • School of International Education, Wuhan Business University, Wuhan, China
  • School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
autor
  • School of International Education, Wuhan Business University, Wuhan, China
autor
  • Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
Bibliografia
  • 1. Pitchan MK, Bhowmik S, Balachandran M, Abraham M. Process optimization of functionalized MWCNT/polyetherimide nanocomposites for aerospace application. Mater Des. 2017;127:193-203.
  • 2. Sahmani S, Shahali M, Khandan A, Saber-Samandari S, Aghdam MM. Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scaffolds fabricated via space holder technique. Appl Clay Sci. 2018;165:112-23.
  • 3. Sahmani S, Khandan A, Saber-Samandari S, Aghdam MM. Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: application, communication and simulation. Ceram Int. 2018;44:11282-91.
  • 4. Fu L-H, Qi C, Hu Y-R, Mei C-G, Ma M-G. Cellulose/vaterite nanocomposites: sonochemical synthesis, characterization, and their application in protein adsorption. Mater Sci Eng C. 2019;96:426-35.
  • 5. Ciplak Z, Yildiz A, Yildiz N. Green preparation of ternary reduced graphene oxide-au@polyaniline nanocomposite for supercapacitor application. J Energy Storage. 2020;32: 101846.
  • 6. Sahmani S, Khandan A, Esmaeili S, Saber-Samandari S, et al. Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation. Ceram Int. 2020;46:2447-56.
  • 7. Oraibi FH, Kadhim RG. Preparation and studying the electrical characteristics of (PS-PMMA-BaTiO3) nanocomposites for piezoelectric applications. Mater Today. 2021. https://doi.org/10.1016/j.matpr.2021.09.082.
  • 8. Somaily HH. One pot facile flash-combustion synthesis of ZnO@NiO nanocomposites for optoelectronic applications. Phys B. 2022;635: 413831.
  • 9. Rafiee M, He XQ, Liew KM. Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. Int J Non-Linear Mech. 2014;59:37-51.
  • 10. Ansari R, Mohammadi V, Shojaei MF, Gholami R, Sahmani S. Postbuckling characteristics of nanobeams based on the surface elasticity theory. Compos B Eng. 2013;55:240-6.
  • 11. Nguyen N-T, Hui D, Lee J, Nguyen-Xuan H. An efficient computational approach for size-dependent analysis of functionally graded nanoplates. Comput Methods Appl Mech Eng. 2015;297:191-218.
  • 12. Zhang LW, Liew KM, Reddy JN. Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory. Compos Struct. 2016;152:418-31.
  • 13. Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des. 2017;116:656-65.
  • 14. Sahmani S, Aghdam MM. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Math Biosci. 2018;295:24-35.
  • 15. El-Borgi S, Rajendran P, Friswell MI, Trabelssi M, Reddy JN. Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory. Compos Struct. 2018;186:274-92.
  • 16. Fu T, Chen Z, Yu H, Wang Z, Liu X. An analytical study of sound transmission through stiffened double laminated composite sandwich plates. Aerosp Sci Technol. 2018;82:92-104.
  • 17. Duc ND, Hadavinia H, Quan TQ, Khoa ND. Free vibration and nonlinear dynamic response of imperfect nanocomposite FGCNTRC double curved shallow shells in thermal environment. Eur J Mech. 2019;75:355-66.
  • 18. Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl Sci. 2019;1:1323.
  • 19. Sahmani S, Safaei B. Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl Math Model. 2020;82:336-58.
  • 20. Gao Y, Xiao W-S, Zhu H. Snap-buckling of functionally graded multilayer graphene platelet-reinforced composite curved nanobeams with geometrical imperfections. Eur J Mech. 2020;82: 103993.
  • 21. Thai CH, Tran TD, Phung-Van P. A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Eng Anal Boundary Elem. 2020;115:52-63.
  • 22. Yi H, Sahmani S, Safaei B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng. 2020;20:48.
  • 23. Yuan Y, Zhao K, Zhao Y, Sahmani S, Safaei B. Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech Mater. 2020;148: 103507.
  • 24. Yang Y, Sahmani S, Safaei B. Couple stress-based nonlinear primary resonant dynamics of FGM composite truncated conical microshells integrated with magnetostrictive layers. Appl Math Mech. 2021;42:209-22.
  • 25. Liu D, Chen D, Yang J, Kitipornchai S. Buckling and free vibration of axially functionally graded graphene reinforced nanocomposite beams. Eng Struct. 2021;249: 113327.
  • 26. Yue X, Yue X, Borjalilou V. Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch Civ Mech Eng. 2021;21:124.
  • 27. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21:114.
  • 28. Rao R, Sahmani S, Safaei B. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch Civ Mech Eng. 2021;21:98.
  • 29. Fan F, Sahmani S, Safaei B. Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation. Thin-Walled Struct. 2021;255: 112969.
  • 30. Wu C-P, Hu H-X. A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory. Mech Mater. 2021;162: 104085.
  • 31. Kazemi M, Ghadiri Rad MH, Hosseini SM. Nonlinear dynamic analysis of FG carbon nanotube/epoxy nanocomposite cylinder with large strains assuming particle/matrix interphase using MLPG method. Eng Anal Bound Elements. 2021;132:126-45.
  • 32. Naskar S, Shingare KB, Mondal S, Mukhopadhyay T. Flexoelectricity and surface effects on coupled electromechanical responses of graphene reinforced functionally graded nanocomposites: a unified size-dependent semi-analytical framework. Mech Syst Signal Process. 2022;169: 108757.
  • 33. Chu J, Wang Y, Sahmani S, Safaei B. Nonlinear large-amplitude oscillations of PFG composite rectangular microplates based upon the modified strain gradient elasticity theory. Int J Struct Stab Dyn. 2022;22:2250068.
  • 34. Zuo D, Safaei B, Sahmani S, Ma G. Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors. Appl Math Mech. 2022;43:825-44.
  • 35. Tao C, Dai T. Modified couple stress-based nonlinear static bending and transient responses of size-dependent sandwich microplates with graphene nanocomposite and porous layers. Thin-Walled Struct. 2022;171: 108704.
  • 36. Taati E, Borjalilou V, Fallah F, Ahmadian MT. On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: perturbation technique. Mech Based Des Struct Mach. 2022;50:2124-46.
  • 37. Liu H, Sahmani S, Safaei B. Combined axial and lateral stability behavior of random checkerboard reinforced cylindrical microshells via a couple stress-based moving Kriging meshfree model. Arch Civ Mech Eng. 2022;22:15.
  • 38. Yang Z, Safaei B, Sahmani S, Zhang Y. A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells. Thin-Walled Struct. 2022;170: 108631.
  • 39. Saiah B, Bachene M, Guemana M, Chiker Y, Attaf B. On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies. Eng Struct. 2022;253: 113784.
  • 40. Jalaei MH, Thai H-T, Civalek O. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int J Eng Sci. 2022;172: 103629.
  • 41. Zhao J, Wang J, Sahmani S, Safaei B. Probabilistic-based nonlinear stability analysis of randomly reinforced microshells under combined axial-lateral load using meshfree strain gradient formulations. Eng Struct. 2022;262: 114344.
  • 42. Ma X, Sahmani S, Safaei B. Quasi-3D large deflection nonlinear analysis of isogeometric FGM microplates with variable thickness via nonlocal stress-strain gradient elasticity. Eng Comput. 2022;38:3691-704.
  • 43. Wang S, Kang W, Yang W, Zhang Z, Li Q, et al. Hygrothermal effects on buckling behaviors of porous bi-directional functionally graded micro-/nanobeams using two-phase local/nonlocal strain gradient theory. Eur J Mech. 2022;94: 104554.
  • 44. Wei L, Qing H. Bending, buckling and vibration analysis of Bidirectional functionally graded circular/annular microplate based on MCST. Compos Struct. 2022;292: 115633.
  • 45. Wang J, Ma B, Gao J, Liu H, Safaei B, Sahmani S. Nonlinear stability characteristics of porous graded composite microplates including various microstructural-dependent strain gradient tensors. Int J Appl Mech. 2022;14:2150129.
  • 46. Shi D-L, Feng X-Q, Huang YY, Hwang K-C, Gao H. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J Eng Mater Technol. 2004;126:250.
  • 47. Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298-313.
  • 48. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10:425-35.
  • 49. Keller HB, editor. (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976). New York: Academic Press; 1977. p. 359-84.
  • 50. Kamarian S, Salim M, Dimitri R, Tornabene F. Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes. Int J Mech Sci. 2016;108:157-65.
  • 51. Yang J, Ke LL, Kitipornchai S. Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E. 2010;42:1727-35.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-322529e8-5955-4f59-bd6d-80dc809fcf29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.