PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Resources and potential for utilization of low-exergy heat from mung bean sprouts cultivation – case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poland is a significant producer of vegetable sprouts, which, due to the high content of nutrients, are produced for food purposes. The cultivation cycle of these plants, especially the mung beans (Vigna radiata), is associated with significant exploitation of natural resources (as much as 275 dm3 of water per 1 kg of dry seeds) and requires appropriate temperature conditions. However, since producing of vegetable sprouts is an exothermic process, there are reasons to organize the growth conditions of these plants in a quasi-autonomous manner. Estimated preliminary studies show that during the entire period of sprout growth, as much as 2.86 MJ of heat from 1 kg of dry seeds can be used, which, taking into account the scale of production of these plants, places them among the significant sources of low-temperature waste heat. The paper presents the results of temperature measurements carried out in a growth chamber used for the industrial production of the mung bean vegetable sprouts. Based on the prepared energy balance, the total amount of heat generated (4.9 GJ) and recovered (3.3 GJ) in the seed germination process was determined. The amount of energy lost in the process of imbibition and the amount of heat needed to ensure optimal plant growth conditions were determined. The study shows that the use of low-temperature heat generated by plants allows for a significant reduction in the energy consumption of the production process.
Rocznik
Strony
507--534
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Dąbrowskiego 69, 42-201 Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Dąbrowskiego 69, 42-201 Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Dąbrowskiego 69, 42-201 Częstochowa, Poland
  • ENERGOPROJEKT-KATOWICE SA, Jesionowa 15, 40-159 Katowice, Poland
  • Uniflora Sp. z o.o., Lwowska 8, 42-202 Częstochowa, Poland
  • Uniflora Sp. z o.o., Lwowska 8, 42-202 Częstochowa, Poland
Bibliografia
  • [1] Szargut J., et al.: Industrial Waste Energy: Principles of Utilization, Equipment. WNT, Warszawa 1993 (in Polish).
  • [2] Turner W.C., Doty S., Eds.: Energy Management Handbook (6th Edn.). Fairmont Press CRC, Taylor & Francis, Lilburn, Boca Raton 2007.
  • [3] Firth A., Zhang B., Yang A.: Quantification of global waste heat and its environmental effects. Appl. Energ. 235(2019), 1314–1334. doi: 10.1016/j.apenergy.2018.10.102
  • [4] Eurostat, 2022. Energy statistics – an overview. http://ec.europa.eu/eurostat/statistics-explained/index.php?title= Energy_statistics_-_an_overview#Final_-energy_ consumption (accessed 20 Feb. 2022).
  • [5] Papapetrou M., Kosmadakis G., Cipollina A., La Commare U., Micale G.: Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 138(2018), 207–216. doi:10.1016/j.applthermaleng.2018.04.043
  • [6] Waste Heat Recovery: Technology and Opportunities in U.S. Industry. BCS Incorporated, 2008. http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf (accessed 26 Sept. 2021).
  • [7] Fitó J., Hodencq S., Ramousse J., Wurtz F., Stutz B., Debray F., Vincent B.: Energyand exergy-based optimal designs of a low-temperature industrial waste heat recovery system in district heating. Energ. Convers. Manage. 211(2020), 112753. doi:10.1016/j.enconman.2020.112753
  • [8] Xu Z.Y., Wang R.Z., Yang C.: Perspectives for low-temperature waste heat recovery. Energy 176(2019), 1037–1043. doi: 10.1016/j.energy.2019.04.001
  • [9] Adamkiewicz A., Nikończuk P.: Waste heat recovery from the air preparation room in a paint shop. Arch. Thermodyn. 40(2023), 3, 229–241. doi: 10.24425/ather.2019.130003
  • [10] Deymi-Dashtebayaz M., Valipour-Namanlo S.: Thermoeconomic and environmental feasibility of waste heat recovery of a data center using air source heat pump. J. Clean. Prod. 219(2019), 117–126. doi: 10.1016/j.jclepro.2019.02.061
  • [11] Morgan R., Nelmes S., Gibson E., Brett G.: Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant. Appl. Energ. 137(2015),845–853. doi: 10.1016/j.apenergy.2014.07.109
  • [12] Strahan D. (Ed.): Liquid air in the energy and transport systems: opportunities for industry and innovation in the UK. Rep. 021. Centre for Low Carbon Futures, Brighton 2013.
  • [13] Loni R., Najafi G., Bellos E., Rajaee F., Said Z., Mazlan M.: A review of industrial waste heat recovery system for power generation with Organic Rankine cycle: Recent challenges and future outlook. J. Clean. Prod. 287(2021), 125070. doi:10.1016/j.jclepro.2020.125070
  • [14] Uusitalo A., Honkatukia J., Turunen-Saaresti T.: Evaluation of a small-scale waste heat recovery organic Rankine cycle. Appl. Energ. 192(2017), 146–158. doi:10.1016/j.apenergy.2017.01.088
  • [15] Carvajal-Mariscal I., De León-Ruíz J.E., Belman-Flores J.M., Salazar-Huerta A.: Experimental evaluation of a thermosyphon-based waste-heat recovery and reintegration device: A case study on low-temperature process heat from a microbrewery plant. Sustain. Energy Technol. Assess. 49(2022), 101760. doi: 10.1016/j.seta.2021.101760
  • [16] Zühlsdorf B., Jørgensen P.H., Elmegaard B.: Industrial Heat Pumps, Second Phase IEA Heat Pump Technology (HPT) Programme Annex 48 Task 1: Danish Report. Danish Technological Institute (2019). https://orbit.dtu.dk/en/publications/ industrial-heat-pumps-second-phase-iea-heat-pump-technology-hpt-p (accessed 19 Feb. 2022).
  • [17] Song J., Li Y., Gu C., Zhang L.: Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry. Energy 71(2014), 673–680. doi: 10.1016/j.energy.2014.05.014
  • [18] Hu B., Liu H., Jiang J., Zhang Z., Li H., Wang R.Z.: Ten megawatt scale vapor compression heat pump for low temperature waste heat recovery: Onsite application research. Energy 238(2022), 121699. doi: 10.1016/j.energy.2021.121699
  • [19] Knudsen B.R., Rohde D., Kauko H.: Thermal energy storage sizing for industrial waste-heat utilization in district heating: A model predictive control approach. Energy 234(2021), 121200. doi: 10.1016/j.energy.2021.121200
  • [20] Wu X., Xing Z., He Z., Wang X., Chen W.: Performance evaluation of a capacityregulated high temperature heat pump for waste heat recovery in dyeing industry. Appl. Therm. Eng. 93(2016), 1193–1201. doi: 10.1016/j.applthermaleng.2015.10.075
  • [21] Rakib M.I., Saidur R., Mohamad E.N., Afifi A.M.: Waste-heat utilization – The sustainable technologies to minimize energy consumption in Bangladesh textile sector. J. Clean. Prod. 142(2017), 1867–1876. doi: 10.1016/j.jclepro.2016.11.098
  • [22] Sekkeli M., Kececioglu O.: SCADA based an energy saving approach to operation of stenter machine in a textile plant using waste heat recovery system. Tekstil Ve Konfeksiyon 22(2012), 3, 248–257.
  • [23] Skjern Papirfabrik: Sustainability Report 2018. Skjern 2018. https://www.skjernpaper.com/media/ehypqkge/06_2191827_rapport_2018_uk.pdf (accessed 13 May 2022).
  • [24] Mubarak A.E.: Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 89(2005), 489–495. doi: 10.1016/j.foodchem.2004.01.007
  • [25] Bewley J.D., Bradford K.J., Hilhorst H.W.M., Nonogaki H.: Seeds: Physiology of Development, Germination and Dormancy (3rd Edn.). Springer, New York 2013.
  • [26] The European Commission: Commission Implementing Regulation (EU) No 208/ 2013 of 11 March 2013 on traceability requirements for sprouts and seeds intended for the production of sprouts. Official Journal of the European Union, L 68/16,12.3.2013.
  • [27] ESSA hygiene guideline for the production of sprouts and seeds for sprouting. European Sprouted Seeds Association (2017). https://op.europa.eu/en/publication-detail/-/publication/4d31413a-63a0-11e7-b2f2-01aa75ed71a1 (accessed 6 July 2022).
  • [28] Criddle R.S., Breidenbach R.W., Hansen L.D.: Plant calorimetry: how to quantitatively compare apples and oranges. Thermochim. Acta 193(1991), 67–90. doi:10.1016/0040-6031(91)80175-I
  • [29] Morohashi Y., Sugimoto M.: ATP Synthesis in cotyledons of cucumber and mung bean seeds during the first hours of imbibition. Plant Cell Physiol. 29(1988), 5, 893–896. doi: 10.1093/oxfordjournals.pcp.a077578
  • [30] Thygerson T., Harris J.M., Smith B.N., Hansen L.D., Pendleton R.L., Booth D.T.: Metabolic response to temperature for six populations of winterfat (Eurotia lanata). Thermochim. Acta 394(2002), 211–217. doi: 10.1016/S0040-6031(02)00253-8
  • [31] Skoczowski A., Troć M.: Isothermal calorimetry and raman spectroscopy to study response of plants to abiotic and biotic stresses. In: Molecular Stress Physiology of Plants (G.R. Rout, A.B. Das, Eds.), 263–288. Springer, New Delhi 2013. doi:10.1007/978-81-322-0807-5_11
  • [32] Pierce G.J.: A new respiration calorimeter. Bot. Gaz. 46(1908), 193–202. doi:10.1086/329696
  • [33] Schabes F.I., Sigstad E.E.: Is it possible to determine physiological quality and best conditions of storage of soybean seeds by isothermal calorimetry? Thermochim. Acta 579(2014), 45–49. doi: 10.1016/j.tca.2014.01.014
  • [34] Stawoska I., Staszak A.M., Ciereszko I., Oliwa J., Skoczowski A.: Using isothermal calorimetry and FT-Raman spectroscopy for step-by-step monitoring of maize seed germination: case study. J. Therm. Anal. Calorim. 142(2020), 755–763. doi:10.1007/s10973-020-09525-x
  • [35] Sigstad E.E., Prado F.E.: A microcalorimetric study of Chenopodium quinoa Willd. seed germination. Thermochim. Acta 326(1999), 159–164. doi: 10.1016/S0040-6031(98)00599-1
  • [36] Sigstad E.E., Schabes F.I., Isothermal microcalorimetry allows detection of ‘aquaporines’ in quinoa seeds. Thermochim. Acta 349(2000), 95–101. doi: 10.1016/S0040-6031(99)00501-8
  • [37] Dincer I., Rosen M. A.: Exergy. Energy, Environment and Sustainable Development(1st Edn.). Elsevier Sci., 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3223c458-043c-4b19-bef9-ba47de3aaf34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.