PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Floodplain morphodynamics and distribution of trace elements in overbank deposits, Vistula River Valley Gorge near Solec nad Wisłą, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geological and geochemical investigations were carried out in the floodplain of the Vistula River Valley gorge near Solec nad Wisłą (Małopolska Gorge of the Vistula River). Geological mapping was supported by DEM and remote sensing analysis. Sediment samples were taken from depths of 0.5 m and 1.5 m from all geomorphological features identified. The geochemical analysis included determination of Cr, V, Sr, Ba, Ni, Cu, Co, As, Pb and Zn concentrations. Results indicate that the main factors affecting the pattern of features in the floodplain of this area are (1) the highly dynamic flood flow in the narrow section of the gorge and (2) the relief of the top surface of the sub-alluvial basement. The variable concentrations of trace elements are closely related to the floodplain features. Their concentrations can be considered as valuable geochemical proxies that enable a more thorough reconstruction of the sedimentary evolution of the Vistula River Valley and other similar river valleys, especially in gorge sections.
Rocznik
Strony
541--559
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
  • Faculty of Geology, University of Warsaw, Warsaw, Poland
autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
autor
  • Faculty of Geology, University of Warsaw, Warsaw, Poland
  • Faculty of Geology, University of Warsaw, Warsaw, Poland
Bibliografia
  • 1. Appleton, J.D. and Adlam, K.A.M. 2012. Geogenic control on soil chemistry in urban areas: A novel method for urban geochemical mapping using parent material classified data. Applied Geochemistry, 27, 161–170.
  • 2. Ber, A. 2006. Pleistocene interglacials and glaciations of northeastern Poland compared to neighbouring areas. Quaternary International, 149, 12–23
  • 3. Bojakowska, I. and Sokołowska, G. 1996. Heavy metals in the Bystrzyca river flood plain. Geological Quarterly, 40, 467–480.
  • 4. Bojakowska, I., Sokołowska, G. and Sztyrak, T. 1992. Heavy metals in bottom deposits of the Vistula, Odra, Warta and Bug rivers Przegląd Geologiczny, 6, 373–377. [In Polish with English summary]
  • 5. Bradley, S.B. and Cox, J.J. 1990. The significance of the floodplain to the cycling of metals in the river Derwent catchment, UK. Science of The Total Environment, 66, 135–153.
  • 6. Bridge, J.S. 2003 Rivers and Floodplains – Forms, Processes, and Sedimentary Record, pp. 1–491. Blackwell; Oxford.
  • 7. Brzezińska-Wójcik, T. 1999. Tectonic activity of the escarpment zone of Tomaszowskie Roztocze in the light of morphometric coefficients (eastern Poland) Przegląd Geologiczny 47/9, 840–845. [In Polish with English summary]
  • 8. Ciszewski, D. 1998. Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: Consequences for pollution monitoring (Upper Silesia, Poland). Environmental Geology, 36, 45–54.
  • 9. Ciszewski, D. 2003. Heavy metals in vertical profiles of the middle Odra river overbank sediments: evidence for pollution changes. Water, Air, and Soil Pollution, 143, 81–98.
  • 10. Ciszewski, D., Malik, I. and Wardas, M. 2004. Geomorphological influences on heavy metal migration in fluvial deposits: the Mała Panew River valley (southern Poland). Przegląd Geologiczny, 52, 163–174. [In Polish with English summary]
  • 11. Conde Bueno, P., Bellido, E., Martín Rubí, J.A. and Jiménez Ballesta, R. 2009. Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environmental Geology, 56, 815–824.
  • 12. Davis, B.E. 1974. Los-on-ignition as an estimate of soil organic matter. Proceedings-Soil Science Society of America, 38, 150–151
  • 13. Falkowska, E. and Falkowski T. 2015. Trace metals distribution pattern in floodplain sediments of a lowland river in relation to contemporary valley bottom morphodynamics. Earth Surface Processes and Landforms, 40, 876–887.
  • 14. Falkowski, E. 1967. Evolution of the Holocene Vistula from Zawichost to Solec with an engineering-geological prediction of further development. Biuletyn Instytutu Geologicznego , 198, 57–148. [In Polish]
  • 15. Falkowski, E. 1971. History and prognosis for the development of bed configurations of selected sections of Polish Lowland rivers. Biuletyn Geologiczny, 12, 5–121. [In Polish with English summary]
  • 16. Falkowski, T. 1997. The importance of recognition of polygeny for the rational utilisation of river valleys in the Polish Lowland, 1997. Proceedings International Symposium Engineering Geology and the Environment, Athens, pp. 107–111. A.A.Balkema; Rotterdam.
  • 17. Falkowski, T. 2007. Alluvial bottom geology inferred as a factor controlling channel flow along the Middle Vistula River, Poland. Geological Quarterly 51, 91–102.
  • 18. Falkowski, T. and Popek, Z. 2000. Zones of ice-jams formation on the Middle Vistula River reach in relation to variable of river valley morphology. Annals of WAU, Land Reclamation, 30, 77–90.
  • 19. Falkowski, T. 2006. Factors of natural stability of the Middle Vistula River channel zones, pp 1–128. SGGW; Warszawa. [In Polish with English summary]
  • 20. Fryirs, K. and Brierley, G. 2013. Geomorphic analysis of river systems, pp. 1–345. Wiley-Blackwell.
  • 21. Förstner, U. and Wittman, G.T.W. 1983. Metal Pollution in the Aquatic Environment, pp. 1–486. Springer; Berlin.
  • 22. Galán, E., Fernandez-Caliani, J.C., Gonzales, I., Aparicio, P. and Romero, A. 2008. Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain. Journal of Geochemical Exploration, 98, 89–106.
  • 23. Gargani, J. 2004. Modelling of the erosion in the Rhone valley during the Messinian crisis (France). Quaternary International, 121, 13–22.
  • 24. Gębica, P. 2004. The course of fluvial accumulation during the Upper Vistulian in Sandomierz Basin. Prace Geograficzne, 193, 1–229. [In Polish with English summary]
  • 25. Gębica, P. and Sokołowski T. 2001. Sedimentological interpretation of crevasse splays formed during the extreme 1997 flood in the upper Vistula River Valley (south Poland). Annales Societatis Geologorum Poloniae, 71, 53–62.
  • 26. Graf, W.L., Clark, S.L., Kammerer, M.T., Lehman, T., Randall, K. and Schroeder, T.R. 1991. Geomorphology of heavy metals in the sediments of Queen Creek, Arizona, USA. Catena, 18, 567–582.
  • 27. Grosbois, C., Meybeck, M., Horowitz, A. and Ficht, A. 2006. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). Science of the Total Environment, 356, 22–37.
  • 28. Grześ, M. 1985. The problem of ice-jams and ice-jam floods in the lower Vistula River. Przegląd Geograficzny, 57, 499–525. [In Polish]
  • 29. Helios-Rybicka, E. 1986. Role of clay minerals in the fixation of heavy metals in bottom sediments of the Upper Vistula River. Zeszyty Naukowe AGH, 32, 1–121. [In Polish]
  • 30. Horowitz, A.J. 1991. A primer on sediment-trace element chemistry, pp. 1–136 Lewis Publishing Inc. Chelsea MI.
  • 31. Leece, S.A. and Pavlowsky, R.T. 2001. Use of mining-contaminated sediment tracers to investigate the timing and rates of historical floodplain sedimentation. Geomorphology, 38, 85–108.
  • 32. Leopold, L.B., Wolman M.G. and Miller J.P. 1964. Fluvial Processes in Geomorphology, pp. 1–522. Freeman & Company; San Francisco.
  • 33. Lewiński, J. 1914. Diluvial deposits and pre-glacial surface design of Przemsza watershed; Prace Towarzystwa Naukowego Warszawskiego, 7, 1–159. [In Polish with German summary]
  • 34. Lis, J., Pasieczna, A., Strzelecki, R., Wołkowicz, S. and Lewandowski, P. 1997. Geochemical and radioactivity mapping in Poland. Journal of Geochemical Exploration, 60, 39–53.
  • 35. Lopez, P., Navarro, E., Marce, R., Ordoñez, J., Caputo, L. and Armengol, J. 2006. Elemental ratios in sediments as indicators of ecological processes in Spanish reservoirs. Limnetica, 25, 499–512.
  • 36. Macklin, M.G. 1996. Fluxes and storage of sediment-associated heavy metals in floodplain systems: assessment and river basin management issues at a time of rapid environmental change. In: Anderson, M.G., Walling, D.E. and Bates, P. (Eds), Floodplain Processes, 440–460. J. Wiley & Sons; Chichester.
  • 37. Marron, D.C. 1989. Physical and chemical characteristics of a metal-contaminated overbank deposit, west-central South Dakota, U.S.A. Earth Surface Processes and Landforms, 14, 419–432.
  • 38. Martin, C.W. 2004. Heavy metal storage in near channel sediments of the Lahn River, Germany. Geomorphology, 61, 275–285.
  • 39. Martin, C.W. 2015. Trace metal storage in recent floodplain sediments along the Dill River, central Germany. Geomorphology, 235, 52–62.
  • 40. Maruszczak, H. 1982. Wisła Lubelska. In: Piskozub A. (Ed.) Wisła, river monograph, pp. 125–136. Wydawnictwa Komunikacji i Łączności; Warszawa. [In Polish]
  • 41. Miller, J.R. 1997. The role of fluvial geomorphologic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration, 58, 101–118.
  • 42. Miller, J.R., Lechler, P.J. and Desilets, M. 1998. The role of geomorphologic processes in the transport and fate of mercury in the Carson River basin, west-central Nevada. Environmental Geology, 33, 249–262.
  • 43. Miller, J.R. and Orbock Miller, S. 2007. Contaminated Rivers: A Geomorphological-Geochemical Approach to Site Assessment and Remediation, pp. 1–418. Springer; Dordrecht.
  • 44. Myślińska, E. 1984. Criteria for evaluation of engineeringgeological properties of the mad. Kwartalnik Geologiczny , 28, 143–162. [In Polish]
  • 45. Pożaryski, W. 1953. Pleistocene in the Vistula River gorge across the Southern Uplands. Prace Instytutu Geologicznego, 9, 1–134. [In Polish]
  • 46. Pożaryski, W. 1955. Fluvial deposits in the Vistula River gorge across the Southern Uplands. Prace Instytutu Geologicznego, 12c, 1–96. [In Polish]
  • 47. Pożarski, W. and Kalicki, T. 1995. Evolution of the gap section of the Vistula valley in the Late Glacial and Holocene. In: Starkel, L. (Ed.), Evolution of the Vistula river valley during the last 15 000 years. Geographical Studies Special Issue, 8, IGiPZ PAN, 111–137.
  • 48. Pożaryski, W., Maruszczak, H. and Lindner, L. 1994. Chronostratigraphy of Pleistocene deposits and evolution of the Middle Vistula River with particular attention to the gap through the South Polish Uplands. Prace Państwowego Instytutu Geologicznego, 148, 1–57.
  • 49. Romanek, A. and Złonkiewicz, Z. 1993. Geological Map of Poland in the scale of 1:200 000, map sheet Ostrowiec Świętokrzyski, Państwowy Instytut Geologiczny; Warszawa. [In Polish]
  • 50. Samsonowicz, J. 1922. Ice-dam lakes on upper and middle Vistula. Sprawozdania Państwowego Instytutu Geologicznego, 1, 4–6. [In Polish]
  • 51. Santos Bermejo, J.C., Beltranand, R. and Gómez Ariza, J.L. 2003. Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29, 69–77.
  • 52. Sawicki, L. 1925. Vistula gorge throughout Mid-Polish Uplands. Prace Instytutu Geografii UJ, 4, 1–68. [In Polish]
  • 53. Sawicki, L. 1933. Contribution to the knowledge of diluvium and morphogenesis of the Vistula gorge near Puławy. Przegląd Geograficzny, 13, 158–169 . [In Polish]
  • 54. Spitz, W.J. and Schumm, S. A. 1997. Tectonic geomorphology of the Mississippi Valley between Osceola, Arkansas and Friars Point, Mississippi. Engineering Geology, 46, 259–280.
  • 55. Starkel, L. 1983. The reflection of hydrologic changes in fluvial environment of the temperate zone during the last 15 000 years. In: J. Gregory (Ed.), Background to Palaeohydrology, pp. 213–234. J. Wiley; Chichester.
  • 56. Taylor, M.P. 1996. The variability of heavy metals in floodplain sediments: a case study from mid Wales. Catena, 28, 71–87.
  • 57. Vanderberghe, J. 2002. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International, 91, 17–23.
  • 58. Velde, B. 1995. Origin and Mineralogy of Clays (Clays and the Environment), pp. 1–335. Springer; Berlin.
  • 59. Walling, D.E., Owens, P.N., Carter, J., Leeks, G.J.L., Lewis, S., Meharg, A.A. and Wright, J. 2003. Storage of sediment-associated nutrients and contaminants in river channel floodplain systems. Applied Geochemistry, 18, 195–220.
  • 60. Wang, S., Zhongyuan, Ch., Smith, D.G. 2005. Anastomosing river system along the subsiding middle Yangtze River Basin, Southern China. Catena, 60, 147–163.
  • 61. Wierzbicki, G., Ostrowski, P., Mazgajski, M. and Bujakowski, F. 2013. Using VHR multispectral remote sensing and LIDAR data to determine the geomorphological effects of overbank flow on a floodplain (the Vistula River, Poland). Geomorphology, 183, 73–81.
  • 62. Wiliams, G.P. and Mackay, D.K. 1973. The characteristics of ice jams. In: Seminar on Ice Jams in Canada, Technical Memorandum, National Research of Canada, 107, 17–35, Ottawa.
  • 63. Wyżga, B. and Ciszewski, D. 2010. Hydraulic controls on the entrapment of heavy metal-polluted sediments on a floodplain of variable width, the upper Vistula River, southern Poland. Geomorphology, 117, 272–286.
  • 64. Zhang K., Liu K. and Yang J. 2004. Asymmetrical valleys created by the geomorphic response of rivers to strikeslip faults. Quaternary Research, 62, 310–315.
  • 65. Zwoliński, Z. 1992. Sedimentology and geomorphology of overbank flows on meandering river floodplains. Geomorphology , 4, 367–379.
  • 66. Zieliński, T. 1998. Litofacjalna identyfikacja osadów rzecznych. In: E. Mycielska-Dowgiałło (Ed.), Struktury sedymentacyjne i postsedymentacyjne w osadach czwartorzędowych i ich wartość interpretacyjna, pp. 195–260. UW Press
Uwagi
EN
The study was financed by the research grant No. 012/05/B/ST10/00931 of the National Science Centre (Poland).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-321cb4ff-3153-4342-9ea6-e73cb46fc761
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.