PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some remarks on the pore water pressure dissipation patterns from the one-dimensional consolidation test

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kilka uwag na temat wzorców rozpraszania ciśnienia wody w porach z jednoosiowego badania konsolidacji
Języki publikacji
EN
Abstrakty
EN
The pattern of pore water pressure dissipation from the one-dimensional consolidation test significantly affects the calculated value of the coefficient of consolidation. This paper discusses the interpretation methodology for laboratory dissipation data from the oedometer test with the pore water pressure measurements or Rowe cell test. In the analysis, the gradient-based algorithm for finding the optimal value of the coefficient of consolidation is used against experimental results, obtained for various fine-grained soils. The appropriate value of coefficient of consolidation is considered as one with the lowest associated error function, which evaluates fitness between the experimental and theoretical dissipation curves. Based on the experimental results, two different patterns of the pore water pressure dissipation are identified, and the saturation of the specimen was found to be the key factor in describing the change in the patterns. For the monotonically decreasing dissipation curve, an inflection point is identified. The values of degree of dissipation at the inflection point are close to the theoretical value of 53.4%.
PL
W artykule omówiono wzorce rozpraszania ciśnienia wody w porach uzyskane w laboratoryjnym badaniu jednoosiowej konsolidacji. Wzorzec rozpraszania ciśnienia wody w porach istotnie wpływa na obliczoną wartość współczynnika konsolidacji. Zasadniczo istnieją dwa typy krzywych rozpraszania ciśnienia wody w porach w przestrzeni półlogarytmicznej. Typ I charakteryzuje się dylatacyjną odpowiedzią rozpraszania na etapie wzrostu ciśnienia. Czas narastania ciśnienia może być znaczny, a obliczona wartość cv z etapu rozpraszania może nie być wartością rzeczywistą. Krzywa typu II wykazuje monotonicznie zmniejszającą się odpowiedź rozpraszania i charakteryzuje się dobrze zdefiniowanym odwróconym kształtem „S” z obecnością punktu przegięcia. Dla monotonicznie malejącej krzywej dyssypacji wartości stopnia dyssypacji w punkcie przegięcia są zbliżone do wartości teoretycznej Uub = 53.4%. W pracy omówiono metodologię interpretacji laboratoryjnych danych rozpraszania ciśnienia pochodzących z badania komorze Rowe'a. W analizie wykorzystano gradientowy algorytm wyznaczania optymalnej wartości współczynnika konsolidacji w celu porównania rozwiązania teoretycznego z wynikami eksperymentalnymi, uzyskanymi dla różnych gruntów drobnoziarnistych. Optymalną wartość współczynnika konsolidacji powiązano z najniższą wartością funkcji błędu, która ocenia dopasowanie między eksperymentalną i teoretyczną krzywą rozpraszania.
Rocznik
Strony
147--162
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
  • Krakow University of Technology, Faculty of Civil Engineering, Kraków, Poland
Bibliografia
  • [1] S. Leroueil, “Compressibility of clays: fundamental and practical aspects”, Journal of Geotechnical Engineering, 1996, vol. 122, no. 7, pp. 534-543; DOI: 10.1061/(ASCE)0733-9410(1996)122:7(534).
  • [2] S. Shukla, N. Sivakugan, B. Das, “Methods for determination of the coefficient of consolidation and field observations of time rate of settlement-an overview”, International Journal of Geotechnical Engineering, 2009, vol. 3, no. 1, pp. 89-108; DOI: 10.3328/IJGE.2009.03.01.89-108.
  • [3] W.V. Abeele, “Consolidation and Shear Failure Leading to Subsidence and Settlement”, [Online]. Available: https://www.osti.gov/biblio/6082905. [Accessed: 9. Feb. 2022].
  • [4] K. Terzaghi, O.K. Fröhlich, Theorie der Setzung von Tonschichte. Vienna, AT: Franz Deuticka, 1936.
  • [5] D.W. Taylor, Research on consolidation of clays. Cambridge, MA, USA: MIT Press, 1942.
  • [6] S.G. Chung, H.J. Kweon, W.Y. Jang, “Hyperbolic fit method for interpretation of piezocone dissipation tests”, Journal of Geotechnical and Geoenvironmental Engineering, 2014, vol. 140, no. 1, pp. 251-254; DOI: 10.1061/(ASCE)GT.1943-5606.0000967.
  • [7] A. Sridharan, K. Prakash, S. Asha, “Consolidation behavior of soils”, Geotechnical Testing Journal, 1995, vol. 18, no. 1, pp. 58-68; DOI: 10.1520/GTJ10122J.
  • [8] J. Lovisa, N. Sivakugan, “An in-depth comparison of cv values determined using common curve-fitting techniques”, Geotechnical Testing Journal, 2012, vol. 36, no. 1, pp. 30-39; DOI: 10.1520/GTJ20120038.
  • [9] S. Sebai, S. Belkacemi, “Consolidation coefficient by combined probabilistic and least residuals methods”, Geotechnical Testing Journal, 2016, vol. 39, no. 5, pp. 891-897; DOI: 10.1520/GTJ20150197.
  • [10] B.S. Olek, “Critical reappraisal of Casagrande and Taylor methods for coefficient of consolidation”, KSCE Journal of Civil Engineering, 2019, vol. 23, pp. 3818-3830; DOI: 10.1007/s12205-019-1222-8.
  • [11] S. Chung, T. Park, H.J. Kweon, “Full-match approach to determine the coefficient of vertical consolidation from Incremental loading consolidation tests”, Geotechnical Testing Journal, 2020, vol. 43, no. 4, pp. 918-936; DOI: 10.1520/GTJ20180326.
  • [12] P.W. Rowe, L.A. Barden, “New Consolidation Cell”, Géotechnique, 1966, vol. 16, no. 2, pp. 162-170; DOI: 10.1680/geot.1966.16.2.162.
  • [13] R.G. Robinson, “Consolidation analysis with pore water pressure measurements”, Géotechnique, 1999, vol. 49, no. 1, pp. 127-132; DOI: 10.1680/geot.1999.49.1.127.
  • [14] R.G. Robinson, B. Soundara, “Coefficient of consolidation from mid-plane pore pressure measurements”, International Journal of Geotechnical Engineering, 2008, vol. 2, no. 4, pp. 419-425; DOI: 10.3328/IJGE.2008.02.04.419-425.
  • [15] K.H. Head, Manual of Soil Laboratory Testing. Devon, ENG: Pentech Press Limited, 1992.
  • [16] J.S. Vinod, A. Sridharan, “Laboratory determination of coefficient of consolidation from pore water pressure measurement”, Géotechnique Letters, 2015, vol. 5, no. 4, pp. 294-298; DOI: 10.1680/jgele.15.00136.
  • [17] A. Asaoka, “Observational procedure of settlement prediction”, Soils and Foundations, 1978, vol. 18, no. 4, pp. 87-101; DOI: 10.3208/sandf1972.18.4_87.
  • [18] P. Dobak, J. Gaszyński, “Evaluation of soil permeability from consolidation analysis based on Terzaghi’s and Biot’s theory”, Geological Quarterly, 2015, vol. 59, no. 2, pp. 373-381; DOI: 10.7306/gq.1197.
  • [19] B.S. Olek, “Experimental insights into consolidation rates during one-dimensional loading with special reference to excess porewater pressure”, Acta Geotechnica, 2020, vol. 15, pp. 3571-3591; DOI: 10.1007/s11440-020-01042-3.
  • [20] J.K. Chow, Y.H. Wang, H.L. Lui, E. Huang, “Determination of consolidation parameters based on the excess pore water pressure measurement using a newly developed U-oedometer”, Acta Geotechnica, 2020, vol. 15, pp. 2665-2680; DOI: 10.1007/s11440-020-00914-y.
  • [21] Y. Jin, Z. Wu, Z. Yin, J. Shen, “Estimation of critical state-related formula in advanced constitutive modeling of granular material”, Acta Geotechnica, 2017, vol. 12, pp. 1329-1351; DOI: 10.1007/s11440-017-0586-5.
  • [22] S. Levasseur, Y. Malécot, M. Boulon, E. Flavigny, “Soil parameter identification using a genetic algorithm”, International Journal for Numerical and Analytical Methods in Geomechanics, 2008, vol. 32, no. 2, pp. 189-213; DOI: 10.1002/nag.614.
  • [23] P.V. Lade, S.B. Hernandez, “Membrane penetration Effects in Undrained Tests”, Journal of the Geotechnical Engineering Division, ASCE, 1977, vol. 103, pp. 109-125.
  • [24] J. Lowe, T.C. Johnson, “Use of back pressure to increase degree of saturation of test specimens”, in Proceedings of the Research Conference on Shear Strength of Cohesive Soils, June 1960, Boulder, USA. New York: American Society of Civil Engineers, University of Colorado Press, 1960, pp. 819-836.
  • [25] R.V. Whitman, A.M. Richardson, K.A. Haley, “Time-lags in pore pressure measurements”, in Proceedings of the fifth International Conference on Soil Mechanics and Foundation Engineering, 17-22 July 1961, Paris, France. Dunod, 1961, pp. 407-411.
  • [26] S.E. Burns, P.W. Mayne, “Monotonic and dilatory pore pressure decay during piezocone tests in clay”, Canadian Geotechnical Journal, 1998, vol. 35, no. 6, pp. 1063-1073; DOI: 10.1139/t98-062.
  • [27] R.D. Northey, R.F. Thomas, “Consolidation test pore pressures”, in Proceedings of the sixth International Conference on Soil Mechanics and Foundation Engineering, 8-15 Sep 1965, Montreal, Canada. University of Toronto Press, 1965, pp. 323-327.
  • [28] W.H. Perloff, K. Nair, J.G. Smith, “Effect of measuring system on pore water pressures in the consolidation test”, in Proceedings of the sixth International Conference on Soil Mechanics and Foundation Engineering, 8-15 Sep 1965, Montreal, Canada. University of Toronto Press, 1965, pp. 338-341.
  • [29] M.P. Acharya, M.T. Hendry, C.D. Martin, “Creep behaviour of intact and remoulded fibrous peat”, Acta Geotechnica, 2018, vol. 13, pp. 399-417; DOI: 10.1007/s11440-017-0545-1.
  • [30] B. Indraratna, K. Kianfar, C. Rujikiatkamjorn, “Laboratory evaluation of coefficient of radial consolidation based on pore-water-pressure dissipation and settlement”, Geotechnical Testing Journal, 2013, vol. 36, no. 1, pp. 1-12; DOI: 10.1520/GTJ20120032.
  • [31] W.Y. Jang, S.G. Chung, H.J. Kweon, “Estimation of coefficients of consolidation and permeability via piezocone dissipation tests”, KSCE Journal of Civil Engineering, 2015, vol. 19, pp. 621-630; DOI: 10.1007/s12205-013-1418-2.
  • [32] C.P. Krage, J.T. DeJong, F. Schnaid, “Estimation of the coefficient of consolidation from incomplete cone penetration test dissipation tests”, Journal of Geotechnical and Geoenvironmental Engineering, 2015, vol. 141, no. 2, pp. 1-6; DOI: 10.1061/(ASCE)GT.1943-5606.0001218.
  • [33] L.L. Zeng, Z.S. Hong, J. Han, “Experimental investigations on discrepancy in consolidation degrees with deformation and pore pressure variations of natural clays”, Applied Clay Science, 2018, vol. 152, pp. 38-43; DOI: 10.1016/j.clay.2017.10.029.
  • [34] L. Barden, “Time dependent deformation of normally consolidated clays and peats”, Journal of the Soil Mechanics and Foundations Division, 1969, vol. 95, no. 1, pp. 1-31; DOI: 10.1061/JSFEAQ.0001214.
  • [35] A.W. Dhowian, T.B. Edil, “Consolidation behaviour of peats”, Geotechnical Testing Journal, 1980, vol. 3, no. 3, pp. 105-114.
  • [36] J. Graham, J.H. Crooks, A.L. Bell, “Time effects on the stress-strain behaviour of natural soft clays”, Géotechnique, 1984, vo. 34, no. 3, pp. 433-444; DOI: 10.1680/geot.1984.34.3.433.
  • [37] G. Grimstad, S.A. Degago, S. Nordal, M. Karstunen, “Modeling creep and rate effects in structured anisotropic soft clays”, Acta Geotechnica, 2010, vol. 5, pp. 69-81; DOI: 10.1007/s11440-010-0119-y.
  • [38] Q.Y. Zhu, Z. Yin, D.M. Zhang, H.W. Huang, “Numerical modeling of creep degradation of natural soft clays under one-dimensional condition”, KSCE Journal of Civil Engineering, 2017, vol. 21, pp. 1668-1678; DOI: 10.1007/s12205-016-1026-z.
  • [39] M.K. Hameedi, M.Y. Fattah, R.R. Al-Omari, “Creep characteristics and pore water pressure changes during loading of water storage tank on soft organic soil”, International Journal of Geotechnical Engineering, 2020, vol. 14, no. 5, pp. 527-537; DOI: 10.1080/19386362.2019.1682350.
  • [40] B.S. Olek, “An experimental investigation of the influence of plasticity on creep degradation rate”, Acta Geotechnica, 2022, vol. 17, pp. 803-817; DOI: 10.1007/s11440-021-01272-z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3219829b-41e2-4dc4-b6f3-2936923aaecd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.