PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On some general solutions of transient Stokes and Brinkman equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
General solution representations for velocity and pressure fields describing transient flows at small Reynolds numbers (Stokes flows) and flows obeying Brinkman models are presented. The geometry dependent vector representations emerge from the incompressibility condition and are expressed in terms of just two scalar functions similar to the Papkovich-Neuber and Boussinesq-Galerkin solution type. We provide new formulae connecting our differential representations and other solutions describing unsteady Stokes flow including Lamb’s (1932) general infinite series solution. The unified approach presented here further demonstrates an important link between oscillatory flows and flow through porous media using Brinkman models. It is shown that the solutions of boundary value problems in the latter can be obtained in a straightforward fashion, from the results of the former. This simple but surprising analogy is further explained using the properties (mathematical as well as physical) that are shared by the two different models. The construction of certain physical quantities is also illustrated for spherical and spheroidal inclusions. It is believed that the general solutions presented here will be useful in the computation of multi-particle interactions in transient and Brinkman flows and also in linear elasticity.
Rocznik
Strony
405--415
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Department of Mathematics and Statistics, Texas A&M University, Corpus Christi, Texas, USA
Bibliografia
  • 1. Basset A.B., 1888, A Treatise on Hydrodynamics, vol. 3, Ch. 21, 22, Cambridge, Deighton Bell
  • 2. Bhatt B.S., Sacheti N.C., 1994, Flow past a porous spherical shell using the Brinkman model, Journal of Physics D: Applied Physics, 27, 37-41
  • 3. Boussinesq M.J., 1885, Application des Potentiels a l’´ Etude de l’´ Equilibre et du Mouvements des Solides ´ Elastiques, Gaythier-Villars, Paris
  • 4. Brinkman H.C., 1947, A calculation of the viscous force exerted by a flowing fluid dense swarm of particles, Applied Science Research, A1, 27-34; On the permeability of media consisting of closely packed porous particles, Applied Science Research, A1, 81-86
  • 5. Damiano E., Long R.D.S., El-Khatib F.H., Stace T.M., 2004, On the motion of a sphere in a Stokes flow parallel to a Brinkman half-space, Journal of Fluid Mechanics, 500, 75-101
  • 6. Dassios G., Vafeas P., 2004, Comparison of differential representations for radially symmetric Stokes flow, Abstract and Applied Analysis, 2004:4, 347-360
  • 7. Felderhof B.U., 1978, Force density induced on a sphere in linear hydrodynamics: I. Fixed sphere, stick boundary conditions, Physica A, 84, 557-568
  • 8. Feng J., Ganatos P., Weinbaum S., 1998, The general motion of a circular disk in Brinkman medium, Physics of Fluids, 10, 2137-2146
  • 9. Happel J., Brenner H., 1983, Low Reynolds Number Hydrodynamics, The Hague: Martinus Nijhoff
  • 10. Higdon J.J.L., Kojima M., 1981, On the calculation od Stokes flow past porous particles, International Journal of Multiphase Flow, 7, 719-728
  • 11. Howells I.D., 1974, Drag due to motion of a Newtonian fluid through a sparse random array of fixed rigid objects, Journal of Fluid Mechanics, 64, 449-475
  • 12. Kim S., Russel W.B., 1985, The hydrodynamic interactions between two spheres in Brinkman medium, Journal of Fluid Mechanics, 154, 253-268
  • 13. Lamb H., 1945, Hydrodynamics, 6th edition, Cambridge University Press, Cambridge 1932; New York, Dover
  • 14. Lawrence C.J., Weinbaum S., 1986, The force on an axisymmetric body in linearized time dependent motion: a new memory term, Journal of Fluid Mechanics, 171, 209-218
  • 15. Lundgren T.S., 1972, Slow flow through stationary random beds and suspension of spheres, Journal of Fluid Mechanics, 51, 273-299
  • 16. Mazur P., Bedeaux D., 1974, A generalization of Faxen’s theorem to non-steady motion of a sphere through an incompressible fluid in arbitrary flow, Physica A, 76, 235
  • 17. Masliyah J.H., Neale G., Malysa K., Van de ven T.G.M., 1987, Creeping flow over a composite sphere: Solid core with porous shell, Chemical Engineering Science, 42, 245-253
  • 18. Milne-Thomson L.M., 1968, Theoretical Hydrodynamics, Macmillan, London
  • 19. Naghdi P.M., Hsu C.S., 1961, On the representation of displacements in linear elasticity in terms of three stress functions, Journal of Mathematics and Mechanics, 10, 233-245
  • 20. Neale G., Epstein N., Nader W., 1973, Creeping flow relative to permeable spheres, Chemical Engineering Science, 28, 1865-1874
  • 21. Neuber N., 1934, Ein Neuer Ansatz Zur L¨osung r¨aumblicher Probleme der Elastizit¨atstheorie, Zeitschrift f¨ur Angewandte Mathematik und Mechanik, 14, 203-212
  • 22. Nield D.A., Bejan A., 1992, Convection in Porous Media, Springer-Verlag
  • 23. Oomes G., Mijulieff P.E., Beckers H.L., 1970, Frictional force exerted by a flowing fluid on a permeable particle with particular reference to polymer coils, Journal of Chemical Physics, 53, 4123-4130
  • 24. Padmavathi B. S., Amaranath T., 1996, Stokes flow past a composite porous spherical Shell with a solid core, Archives of Mechanics, 48, 311-323
  • 25. Padmavathi B.S., Sekhar G.P.R., Amaranath T., 1998, A note on complete general solutions of Stokes equations, Quarterly Journal of Mechanics and Applied Mathematics, 51, 383-388
  • 26. Palaniappan D., 2000, General slow viscous flows in a two-fluid system, Acta Mechanica, 139, 1/4, 1-13
  • 27. Palaniappan D., 2009, Some general differential representations and theorems involving boundaries in multiphase Stokes flow, Theoretical Methods for Micro Scale Viscous Flows, eds. Francois Feuillebois and Antoine Sellier, 19-36
  • 28. Palaniappan D., Nigam S.D., Amaranath T., Usha R., 1992, Lamb’s solution of Stokes equations: A sphere theorems, Quarterly Journal of Mechanics and Applied Mathematics, 45, 47-56
  • 29. Pop I., Ingham D.B., 1996, Flow past a sphere embedded in a porous medium based on the Brinkman model, International Communications in Heat and Mass Transfer, 23, 865-874
  • 30. Pozrikidis C., 1991, Singularity Methods for Linearised Viscous Flow, Cambridge University Press
  • 31. Pozrikidis C., 1994, A bibliographical note on the unsteady motion of a spherical drop at low Reynolds number, Physics of Fluids, 6, 9, 3209
  • 32. Qin Y., Kaloni P.N., 1993, Creeping flow past a porous spherical shell, Zeitschrift f¨ur Angewandte Mathematik und Mechanik, 73, 77-84
  • 33. Saffman P.G., 1971, On the boundary conditions on the surface of a porous medium, Studies in Applied Mathematics, 50, 93-101
  • 34. Shu J.-J., Chwang A.T., 2001, Generalized fundamental solutions for unsteady viscous flows, Physical Review E, 63, 051201
  • 35. Smith S. H., 1995, Structural changes in transient Stokes flow, Quarterly Journal of Mechanics and Applied Mathematics, 48, 285-309
  • 36. Stokes G.G., 1851, On the effect of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 9, 8
  • 37. Tam C.K.W., 1969, The drag on a cloud of spherical particles in low-Reynolds number flow, Journal of Fluid Mechanics, 38, 537-546
  • 38. Tsai P., Huang C.H., Lee E., 2011, Electrophoresis of a charged colloidal particle in porous media: boundary effect of a solid plane, Langmuir, 27, 22, 13481-13488
  • 39. Watson G.N., 1952, A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge University Press
  • 40. Yang S.-M., Leal L.G., 1991, A note on memory-integral contributions to the force on an accelerating spherical drop at low Reynolds number, Physics of Fluids, A3, 7, 1822-1824
  • 41. Zhang W., Stone H.A., 1998, Oscillatory motions of circular disks and near spherical particles in viscous flows, Journal of Fluid Mechanics, 367, 329-348
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-321441bb-5f6b-4210-bcfb-7ffbe5dde4dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.