PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spaliny emitowane z silników Diesla, mierzone jako węgiel elementarny : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Diesel engine exhaust, measured as elemental carbon : documentation of proposed values of occupational exposure limits (OELs)
Języki publikacji
PL
Abstrakty
PL
Spaliny emitowane z silników Diesla (SESD) to wieloskładnikowe mieszaniny związków chemicznych powstające w wyniku niecałkowitego spalania paliwa i oleju silnikowego. Działanie toksyczne spalin jest związane z obecnością w nich związków o działaniu toksycznym i kancerogennym. W GIS podano w 2019 r., że liczba pracowników zatrudnionych w warunkach stanowiących 0,1 ÷ 0,5 wartości NDS (obowiązujących dla spalin emitowanych z silników Diesla) w 2017 r. oraz w 2018 r. wynosiła odpowiednio 1 071 i 986, natomiast w warunkach 0,5 ÷ 1 NDS wynosiła odpowiednio 26 i 46. W wykazie chorób zawodowych w latach 2013- 2017 zarejestrowano 2 przypadki nowotworów: jeden pęcherza moczowego i jeden krtani (narażenie na WWA obecne w spalinach). W klinicznym obrazie ostrego zatrucia spalinami dominuje działanie drażniące na błony śluzowe oczu i górnych dróg oddechowych. Podrażnienie spojówek oczu jest uważane za jeden z bardziej czułych wskaźników narażenia na spaliny. Zatrucia przewlekłe są obserwowane zazwyczaj u osób zawodowo narażonych przez co najmniej kilka lat. Dominują u nich zmiany czynnościowe i morfologiczne w układzie oddechowym. Przedłużające się narażenie na duże stężenia spalin powodowało: kumulację cząstek stałych w makrofagach, zmiany w komórkach płuc, zwłóknienie i metaplazję nabłonka. Narażenie na spaliny może zaostrzać objawy istniejących już chorób, np. astmy czy alergii. Wyniki badań epidemiologicznych świadczą o istnieniu związku pomiędzy zawodowym narażeniem na spaliny emitowane z silników Diesla a zwiększoną częstością występowania pewnych grup nowotworów, głównie raka płuca i raka pęcherza moczowego. W badaniach przeprowadzonych na zwierzętach laboratoryjnych wykazano, że narażenie na spaliny emitowane z silników Diesla powodowało zaburzenia układów: oddechowego, krążenia, nerwowego i odpornościowego. W testach mutagenności wykazano dodatnie reakcje w kilku szczepach Salmonella. Wyniki badań na zwierzętach (narażenie prenatalne i dorosłych osobników) świadczą o tym, że narażenie na spaliny może mieć wpływ na płodność samców. W załączniku III Dyrektywy Parlamentu Europejskiego i Rady (UE) 2019/130 zostały zamieszczone wartości dopuszczalne narażenia zawodowego zmieniające dyrektywę 2004/37/WE. Dla spalin emitowanych z silników Diesla dla 8-godzinnego dnia pracy wartość ta została ustalona na 0,05 mg/m3 (mierzone jako węgiel elementarny). Po 1 ÷ 2-godzinnym narażeniu inhalacyjnym ludzi na stężenia 75 ÷ 225 µg/m³ (jako węgiel elementarny) obserwowano zmniejszenie parametrów czynnościowych układu oddechowego oraz wystąpienie zmian zapalnych w płucach. Brak jest wystarczających danych dotyczących narażenia zawodowego na spaliny emitowane z silników Diesla nowej generacji. W związku z tym zaproponowano przyjąć jako wartość NDS dla spalin emitowanych z silników Diesla stężenie 0,05 mg/m³ (mierzone jako węgiel elementarny) ujęte w Dyrektywie 2019/130, bez wyznaczania wartości NDSCh oraz NDSP. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Exhaust emissions from diesel engines (SESD) are multi-component mixtures of chemical compounds resulting from incomplete combustion of fuel and engine oil. The toxic effect of exhaust gases is associated with the presence of toxic and carcinogenic compounds in them. GIS reports in 2019 that the number of employees employed in conditions constituting 0.1– 0.5 of MAC-TWA (applicable for exhaust emissions from diesel engines) in 2017 and in 2018 was 1071 and 986, respectively, while in conditions 5–1 MAC-TWA were 26 and 46, respectively. In the list of occupational diseases in the years 2013–2017, two cases of cancer were registered: in the bladder and in the larynx (exposure to PAHs present in exhaust gases). In the clinical picture of acute exhaust poisoning, irritant effects on the mucous membranes of the eyes and upper respiratory tract predominate. Eye conjunctival irritation is considered to be one of the most sensitive indicators of exhaust gas exposure. Chronic poisoning is usually seen in people who have been exposed to work for at least several years. Functional and morphological changes in the respiratory system dominate. Prolonged exposure to high concentrations of exhaust gases has resulted in accumulation of solid particles in macrophages, changes in lung cells, fibrosis and epithelial metaplasia. Exposure to exhaust fumes can exacerbate the symptoms of existing diseases, e.g., asthma, allergies. The results of epidemiological studies indicate a relationship between occupational exposure to exhaust gas emitted from diesel engines and the increased incidence of certain groups of cancers, mainly lung cancer and bladder cancer. Studies conducted on laboratory animals have shown that exposure to exhaust fumes emitted from diesel engines caused disorders of the respiratory, circulatory, nervous and immune systems. Mutagenicity tests showed positive responses in several Salmonella strains. Animal studies (prenatal and adult exposure) suggest that exposure to exhaust gas may affect male fertility. Annex III of Directive (EU) 2019/130 of the European Parliament and of the Council contains occupational exposure limit values amending Directive 2004/37/EC. For exhaust emissions from diesel engines for an 8-hour working day, this value was set at 0.05 mg/m³ (measured as elemental carbon). After 1–2 hours of human inhalation exposure to concentrations of 75–225 µg/m³ (as elemental carbon), a decrease in respiratory function parameters and the occurrence of inflammatory changes in the lungs were observed. There is insufficient data on occupational exposure to exhaust emissions from new-generation diesel engines. Therefore, it was proposed to adopt as the MAC-TWA value for exhaust emissions from diesel engines a concentration of 0.05 mg/m³ (measured as elemental carbon) included in Directive 2019/130, without setting STEL and TLV-C. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Rocznik
Strony
43--103
Opis fizyczny
Bibliogr. 207 poz., tab.
Twórcy
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
Bibliografia
  • 1. ACGIH (2018). Guide to Occupational Exposure Values. Anselme F., Loriot S., Henry J.P., Dionnet F., Napoleoni J.G., Thuillez C., Morin J.P. (2007). Inhalation of diluted diesel engine emission impacts heart rate variability and arrhythmia occurrence in a rat model of chronic ischemic heart failure. Arch. Toxicol 81, 299–307.
  • 2. Attfield M.D., Schleiff P.L., Lubin J.H. i in. (2012). The Diesel Exhaust in Miners Study: A Cohort Mortality Study With Emphasis on Lung Cancer. J. Natl. Cancer 104, 869–883.
  • 3. Auten R.L., Gilmour M.I., Krantz Q.T., Potts E.N., Mason S.N., Foster W.M. (2012). Maternal diesel inhalation increases airway hyperreactivity in ozone-exposed offspring. Am. J. Respir. Cell. Mol. Biol. 46, 454–460.
  • 4. Badyga A.J. (2010). Zagrożenia środowiskowe ze strony transportu [Environmental impact of transport]. Nauka, nr 4.
  • 5. Bai N., Kido T., Kavanagh T.J., Kaufman J.D., Rosenfeld M.E., van Breemen C., van Eeden S.F. (2011a). Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice. Toxicol. Appl. Pharmacol. 255, 184–192.
  • 6. Bai N., Kido T., Suzuki H., Yang G., Kavanagh T.J., Kaufman J.D., Rosenfeld M.E., van Breemen C., Eeden S.F. (2011b). Changes in atherosclerotic plaques induced by inhalation of diesel exhaust. Atherosclerosis 216, 299–306.
  • 7. Barath S., Mills N.L., Lundbäck M., Törnqvist H., Lucking A.J., Langrish J.P., Söderberg S., Boman C., Westerholm R., Löndahl J., Donaldson K., Mudway I.S., Sandström T., Newby D.E., Blomberg A. (2010). Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Part. Fibre Toxicol. 7, 19.
  • 8. Bastain T.M., Gilliland F.D., Li Y.F., Saxon A., Diaz- -Sanchez D. (2003). Intraindividual reproducibility of nasal allergic responses to diesel exhaust particles indicates a susceptible phenotype. Clin. Immunol. 109, 130–136.
  • 9. Behndig A.F., Mudway I.S., Brown J.L., Stenfors N. Helleday R. Duggan S.T., Wilson S.J., Boman C., Cassee F.R., Frew A.J., Kelly F.J., Sandström T., Blomberg A. (2006). Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur. Respir. J. 27, 359–365.
  • 10. Behndig A.F., Larsson N., Brown J.L., Stenfors N., Helleday R., Duggan S.T., Dove R.E., Wilson S.J., Sandström T., Kelly F.J., Mudway I.S., Blomberg A. (2011). Proinflammatory doses of diesel exhaust in healthy subjects fail to elicit equivalent or augmented airway inflammation in subjects with asthma. Thorax 66, 12–19.
  • 11. Bojanowska M. (2011). Zanieczyszczenia motoryzacyjne w środowisku [Motor vehicle pollution in the environment]. Autobusy 10, 77–83.
  • 12. Bond J.A. (1988). Distribution of DNA adduct in the repiratory tract of rats exposed to Diesel exhaust. Toxicol. Appl. Pharmacol. 96, 336–346.
  • 13. Brightwell J., Fouillet X., Cassano-Zoppi A.L., Gatz R., Duchosal F. (1986). Neoplastic and functional changes in rodents after chronic inhalation of engine exhaust emissions. [In:] N. Ishinishi, A. Koizumi, R.O. McClellan, W. Stober [eds.]. Carcinogenic and mutagenic effects of diesel engine exhaust: proceedings of the international satellite symposium on toxicological effects of emissions from diesel engines. Japan, Tsukuba Science City. Holland, Amsterdam, Elsevier Science Publishers BV, 471–485 [cyt. za: Taxell, Santonen 2016].
  • 14. Brightwell J., Fouillet X., Cassano-Zoppi A-L., Bernstein D., Crawley F., Duchosal F., Gatz R., Perczel S., Pfeifer H. (1989). Tumors of the respiratory tract in rats and hamsters following chronić inhalation of engine exhaust emissions. J. Appl. Toxicol. 9, 23–31.
  • 15. Brito J.M., Belotti L., Toledo A.C., Antonangelo L., Silva F.S., Alvim D.S., Andre P.A., Saldiva P.H., Rivero D.H. (2010). Acute cardiovascular and inflammatory toxicity induced by inhalation of diesel and biodiesel exhaust particles. Toxicol. Sci. 116, 67–78.
  • 16. Bünger J., Müller M.M., , Krahl J., Baum K., Weigel A., Hallier E., Thomas G. Schulz T.G. (2000). Mutagenicity of diesel exhaust particles from two fossil and two plant oil fuels. Mutagenesis 15(5), 391–397.
  • 17. Campen M.J., Babu N.S., Helms G.A., Pett S., Wernly J., Mehran R., McDonald J.D. (2005). Nonparticulate components of diesel exhaust promote constriction in coronary arteries from ApoE-/- mice. Toxicol. Sci. 88, 95–102.
  • 18. Campen M.J., Lund A.K., Knuckles T.L., Conklin D.J., Bishop B., Young D., Seilkop S., Seagrave J., Reed M.D., McDonald J.D. (2010). Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE(-/-) mice. Toxicol. Appl. Pharmacol. 242, 310–317.
  • 19. Campen M.J., McDonald J.D., Gigliotti A.P., Seilkop S.K., Reed M.D., Benson J.M. (2003). Cardiovascular effects of inhaled diesel exhaust in spontaneously hypertensive rats. Cardiovasc. Toxicol. 3, 353–361.
  • 20. Carll A.P., Hazari M.S., Perez C.M., Krantz Q.T., King C.J., Winsett D.W., Costa D.L., Farraj A.K. (2012). Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats. Toxicol. Sci. 128, 490–499.
  • 21. Coble J.B., Stewart P.A., Vermeulen R., Yereb D., Stanevich R., Blair A., Silverman D.T., Attfield M. (2010). The Diesel Exhaust in Miners Study: II. Exposure monitoring surveys and development of exposure groups. Ann. Occup. Hyg. 54(7), 747–761.
  • 22. Conklin D.J., Kong M. (2012). HEI Health Review Committee. Part 4. Effects of subchronic diesel engine emissions exposure on plasma markers in rodents: report on 1- and 3-month exposures in the ACES bioassay. Res. Rep. Health. Eff. Inst. 166, 189–223.
  • 23. Conklin D.J., Kong M. (2015). HEI Health Review Committee. Part 4. Assessment of plasma markers and cardio-vascular responses in rats after chronic exposure to new-technology diesel exhaust in the ACES bioassay. Res. Rep. Health Eff. Inst. 184, 111–139; discussion 141–171.
  • 24. Corson L., Zhu H., Quan C., Grunig G., Ballaney M., Jin X., Perera F.P., Factor P.H., Chen L.C., Miller R.L. (2010). Prenatal allergen and diesel exhaust exposure and their effects on allergy in adult offspring mice. Allergy Asthma Clin. Immunol. 6, 7–18.
  • 25. Crüts B., van Etten L., Törnqvist H., Blomberg A., Sandström T., Mills N.L., Borm P.J. (2008). Exposure to diesel exhaust induces changes in EEG in human volunteers. Part Fibre Toxicol. 5, 4.
  • 26. Czerczak S., Szymczak W., Lebrecht G., Hanke W. (2005). Spaliny silnika Diesla. Dokumentacja proponowanych wartości dopuszczalnych poziomów narażenia zawodowego. Podstawy i Metody oceny Środowiska Pracy 3(45), 89–133.
  • 27. Dawson S.V., Alexeeff G.V. (2001). Multi-stage model estimates of lung cancer risk from exposure to diesel exhaust, based on a u.s. railroad worker cohort. Risk Analysis 21, 1–18.
  • 28. DFG (2010). The MAK-Collection for occupational health and safety. MAK, 49. Lieferung, Deutsche Forschungsgemeinschaft. Germany, Weinheim, Wiley-VCH, 34 [publication in German].
  • 29. DFG (2018). Deutsche Forschungsgemeinschaft: List of Maximum Concentrations (MAK) and Biological Tolerance Values (BAT) at the Workplace. Raport 54.
  • 30. Diaz-Sanchez D., Garcia M.P., Wang M., Jyrala M., Saxon A. (1999). Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J. Allergy Clin. Immunol. 104, 1183–1188.
  • 31. Diaz-Sanchez D., Tsien A., Fleming J., Saxon A. (1997). Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweedspecific IgE and skews cytokine production to a T helper cell 2-type pattern. J. Immunol. 158, 2406–2413.
  • 32. Dong C.C., Yin X.J., Ma J.Y., Millecchia L., Barger M.W., Roberts J.R., Zhang X.D., Antonini J.M., Ma J.K. (2005a). Exposure of brown Norway rats to diesel exhaust particles prior to ovalbumin (OVA) sensitization elicits IgE adjuvant activity but attenuates OVA-induced airway inflammation. Toxicol. Sci. 88, 150–160.
  • 33. Dong C.C., Yin X.J., Ma J.Y., Millecchia L., Wu Z.X., Barger M.W., Roberts J.R., Antonini J.M., Dey R.D., Ma J.K. (2005b). Effect of diesel exhaust particles on allergic reactions and airway responsiveness in ovalbumin-sensitized brown Norway rats. Toxicol. Sci. 88, 202–212.
  • 34. Dybdahl M., Risom L., Bornholdt J., Autrup H., Loft S., Wallin H. (2004). Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. Mutat. Res. 562, 119–131.
  • 35. Dyrektywa Parlamentu Europejskiego i Rady (UE) 2019/130 z dnia 16 stycznia 2019 r. zmieniająca dyrektywę 2004/37/ WE w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów podczas pracy. Dz. Urz. UE z dnia 31.1.2019 [Directive (EU) 2019/130 of the European Parliament and of the Council of 16 January 2019 amending Directive 2004/37/ EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work (Text with EEA relevance.)].
  • 36. EPA (2002). U.S. Environmental Protection Agency, Health Assessment Document for Diesel Engine Exhaust, 1–669. EPA (2008). Integrated science assessment for oxides of nitrogen – health criteria.
  • 37. EPA/600/R-08/071. Research Triangle Park, North Carolina: National Center for Environmental Assessment-RTP Division, Office of Research and Development, US Environmental Protection Agency.
  • 38. Fall M., Haddouk H., Loriot S., Diouf A., Dionnet F., Forster R., Morin J.P. (2011). Mutagenicity of diesel engine exhaust in the Ames/Salmonella assay using a direct exposure method. Toxicol. Environ. Chem. 93(10), 1–11.
  • 39. Fedulov A.V., Leme A., Yang Z., Dahl M., Lim R., Mariani T.J., Kobzik L. (2008). Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am. J. Respir. Cell. Mol. Biol. 38, 57–67.
  • 40. Fujimoto A., Tsukue N., Watanabe M., Sugawara I., Yanagisawa R., Takano H., Yoshida S., Takeda K. (2005). Diesel exhaust affects immunological action in the placentas of mice. Environ. Toxicol. 20, 431–440.
  • 41. Garshick E., Laden F., Hart J.E., Davies M.E., Eisen E.A., Smith T.J. (2012). Lung cancer and elemental carbon exposure in trucking industry workers. Environ. Health Perspect. 120, 1301–1306.
  • 42. Gerlofs-Nijland M.E., Totlandsdal A.I., Kilinc E., Boere A.J., Fokkens P.H., Leseman D.L., Sioutas C., Schwarze P.E., Spronk H.M., Hadoke P.W., Miller M.R., Cassee F.R. (2010a). Pulmonary and cardiovascular effects of traffic-related particulate matter: 4-week exposure of rats to roadside and diesel engine exhaust particles. Inhal. Toxicol. 22, 1162–1173.
  • 43. Gerlofs-Nijland M.E., van Berlo D., Cassee F.R., Schins R.P., Wang K., Campbell A. (2010b). Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part. Fibre Toxicol. 7, 12.
  • 44. GESTIS (2019). International Limit Values [dostęp: 16.01.2019; https://limitvalue.ifa.dguv.de/WebForm_ueliste2. aspx].
  • 45. Giakoumis E.G., Rakopoulos C.D, Dimaratos A.M., Rakopoulos D.C. (2013). Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: a review. Renew. Sustain. Energy Rev. 17, 170–190 [cyt. za: Steiner i in. 2016].
  • 46. GIS, Główny Inspektor Sanitarny (2019).
  • 47. Gottipolu R.R., Wallenborn J.G., Karoly E.D., Schladweiler M.C., Ledbetter A.D., Krantz T., Linak W.P., Nyska A., Johnson J.A., Thomas R., Richards J.E., Jaskot R.H., Kodavanti U.P. (2009). One-month diesel exhaust inhalation products hypertensive gene expression pattern in healthy rats. Environ. Health Perspect. 117, 38–46.
  • 48. Hallberg L.M., Ward J.B., Hernandez C., Ameredes B.T., Wickliffe J.K. (2015). HEI Health Review Committee. Part 3. Assessment of genotoxicity and oxidative damage in rats after chronić exposure to new-technology diesel exhaust in the ACES bioassay. Res. Rep. Health Eff. Inst. 184, 87–105; discussion 141–171.
  • 49. Hashimoto K., Ishii Y., Uchida Y., Kimura T., Masuyama K., Morishima Y., Hirano K., Nomura A., Sakamoto T., Takano H., Sagai M., Sekizawa K. (2001). Exposure to diesel exhaust exacerbates allergen-induced airway responses in guinea pigs. Am. J. Respir. Crit. Care Med. 164, 1957–1963.
  • 50. Health Council of the Netherlands (2019). Diesel Engine Exhaust. Health-based recommended occupational exposure limit. Haga. 13.03.2019.
  • 51. HEI, Health Effects Institute (1995). Diesel Exhaust: A Critical Analysis of Emissions, Exposure, and Health Effects. A Special Report of the Institute’s Diesel Working Group.
  • 52. Heinrich U., Fuhst R., Rittinghausen S., Creutzenberg O., Bellmann B., Koch W., Levsen K. (1995). Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide. Inhal. Toxicol. 7, 533–556.
  • 53. Heinrich U., Muhle H., Takenaka S., Ernst H., Fuhst R., Mohr U., Pott F., Stöber W. (1986). Chronic effects on the resipratory tract of hamster, mice and rats long-term inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J. Appl. Toxicol. 6, 383–395.
  • 54. Hemmingsen J.G., Hougaard K.S., Talsness C., Wellejus A., Loft S., Wallin H., Møller P. (2009). Prenatal exposure to diesel exhaust particles and effect on the male reproductive system in mice. Toxicology 264, 61–68.
  • 55. Hesterberg T.W, Long C.M, Bunn W.B, Sax S.N, Lapin C.A, Valberg P.A. (2009). Non-cancer health effects of diesel exhaust: a critical assessment of recent human and animal toxicological literature. Crit. Rev. Toxicol. 39(3), 195–227.
  • 56. Hesterberg T.W., Long C.M., Bunn W.B., Lapin C.A., McClellan R.O., Valberg P.A. (2012). Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk. Inhalation Toxicology 24, 1–45.
  • 57. Hesterberg T.W., Bunn W.B. 3rd, Chase G.R., Valberg P.A., Slavin T.J., Lapin C.A., Hart G.A. (2006). A critical assessment of studies on the carcinogenic potential of diesel exhaust. Crit. Rev. Toxicol. 36(9), 727–776.
  • 58. Hou S.M., Lambert B., Hemminki K. (1995). Relationship between hprt mutant frequency, aromatic DNA adducts and genotypes for GSTM1 and NAT2 in bus maintenance workers. Carcinogenesis 16, 1913–1917.
  • 59. Hougaard K.S., Jensen K.A., Nordly P., Taxvig C., Vogel U., Saber A.T., Wallin H. (2008). Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice. Part. Fibre Toxicol. 5, 3.
  • 60. Hougaard K.S., Saber A.T., Jensen K.A., Vogel U., Wallin H. (2009). Diesel exhaust particles: effects on neurofunction in female mice. Basic Clin. Pharmacol. Toxicol. 105, 139–143.
  • 61. Hussain S., Laumbach R., Coleman J., Youssef H., KellyMcNeil K., Ohman-Strickland P., Zhang J., Kipen H. (2012). Controlled exposure to diesel exhaust causes increased nitrite in exhaled breath condensate among subjects with asthma. J. Occup. Environ. Med. 54, 1186–1191.
  • 62. IARC (1989). Monographs on the evaluatuin of carcinogenic risks to humans. Lyon 46, 41–185.
  • 63. IARC (2012). IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Chemical Agents and Related Occupations. Vol. 100F.
  • 64. IARC (2013). Diesel and gasoline engine exhaust and some nitroarenes. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 105. France, Lyon, International Agency for Research on Cancer, 753.
  • 65. IARC (2014). IARC Monographs on evaluation of carcinogenic risks to humans. Diesel and gasoline engine exhausts and some nitroarenes. Vol. 105. World Health Organization.
  • 66. Ichinose T., Yajima Y., Nagashima M., Takenoshita S., Nagamachi Y., Sagai M. (1997). Lung carcinogensis and formation of 8-hydroxy-deoxyguanosine in mice by diesel exhaust particles. Carcinogensis 18, 185–192.
  • 67. Imtenan S., Varman M., Masjuki H.H., Kalam M.A., Sajjad H., Arbab M.I., Rizwanul Fattah I.M. (2014). Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: a review. Energy Convers. Manag. 80, 329–356 [cyt. za: Steiner i in. 2016].
  • 68. Ishihara Y., Kagawa J. (2003). Chronic diesel exhaust exposures of rats demonstrate concentration and time-dependent effects on pulmonary inflammation. Inhal. Toxicol. 15, 473–492.
  • 69. Ishinishi N., Kuwabara N., Takaki Y. (1988). Long-term inhalation experiments on DE. [In:] DE and health risks: results of the HERP studies. Japan, Tsukuba, Ibaraki, Japan Automobile Research Institute, Research Committee for HERP Studies [cyt. za: Taxell, Santonen 2016].
  • 70. Ishinishi N., Kuwabara N., Nagase S. Suzuki T., Ishiwata S., Kohno T. (1986). Long-term inhalation studies on effects of exhaust from heavy and light duty diesel engines on F344 rats. Dev. Toxicol. Environ. Sci. 13, 329–348 [cyt. za: IARC 2014].
  • 71. Iwai K., Adachi S., Takahashi M., Möller L., Udagawa T., Mizuno S., Sugawara I. (2000). Early oxidative DNA damages and late development of lung cancer in diesel exposed-rats. Environ. Res. 84, 255–264.
  • 72. Iwai K., Higuchi K., Udawaga T., Ohtomo K., Kawabata Y. (1997). Lung tumor induced by long-term inhalation or intratracheal instilation of diesl exhaust particles. Exp. Toxicol. Pathol. 49(5), 393–401.
  • 73. Iwai K., Udagawa T., Yamagishi M., Yamada H. (1986). Long-term inhalation studies of diesel exhaust on F344 SPF rats, incidence of lung cancer nad lymphoma. Dev. Toxicol. Environ. Sci. 13, 349–360 [cyt. za: IARC 2014].
  • 74. Jankowska E., Pośniak M. (2010) Stężenie i rozkład wymiarowy cząstek spalin silników Diesla. Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, 23-27.
  • 75. Kaplan H.L., MacKenzie W.F., Springer K.J., Schreck R.M., Vostal J.J. (1982). A subchronic study of the effects of exposure of three species of rodents to diesel exhaust. Dev. Toxicol. Environ. Sci. 10, 161–182.
  • 76. Kato A., Nagai A., Kagawa J. (2000). Morphological changes in rat lung after long-term exposure to diesel emissions. Inhal. Toxicol. 12, 469–490.
  • 77. Knudsen L.E., Gaskell M., Martin E.A., Poole J., Scheepers P.T., Jensen A., Autrup H., Farmer P.B. (2005). Genotoxic damage in mine workers exposed to diesel exhaust, and the effects of glutathione transferase genotypes. Mutat. Res. 583, 120–132.
  • 78. Kobayashi T., Ikeue T., Ito T., Ikeda A., Murakami M., Kato A, Maejima K, Nakajima T, Suzuki T. (1997). Shortterm exposure to diesel exhaust induces nasal mucosal hyperresponsiveness to histamine in guinea pigs. Fundam. Appl. Toxicol. 38,166–172.
  • 79. Kooter I.M., Gerlofs-Nijland M.E., Boere A.J., Leseman D.L., Fokkens P.H., Spronk H.M., Frederix K., Ten Cate H., Knaapen A.M., Vreman H.J., Cassee F.R. (2010). Diesel engine exhaust initiates a sequence of pulmonary and cardiovascular effects in rats. J. Toxicol. 2010, 1–12.
  • 80. Kozielska B., Rogula-Kozłowska W., Pastuszka J.D. (2009). Wpływ ruchu drogowego na stężenia PM2.5, PM10 i WWA w warunkach wysokiej i niskiej emisji komunalnej. [Effect of road traffic on concentration of PM2.5, PM10 and pahs in zones of high and low municipal emission], [In:] J. Ozonka, M. Pawłowska [Eds.]. Polska inżynieria środowiska pięć lat po wstąpieniu do Unii Europejskiej [publication in Polish]. Monografia 58, Lublin [cyt. za: Bojanowska 2011].
  • 81. Krivoshto I.N., Richards J.R., Albertson T.E., Derlet R.W. (2008). The toxicity of Diesel exhaust: implications for primary care. J. Am. Board Fam. Med. 55–62.
  • 82. Kubo-Irie M., Oshio S., Niwata Y., Ishihara A., Sugawara I., Takeda K. (2011). Pre- and postnatal exposure to low-dose diesel exhaust impairs murine spermatogenesis. Inhal. Toxicol. 23, 805–813.
  • 83. Kunitake E., Shimamura K., Katayama H., Takemoto K.,Yamamoto A., Hisanaga A., Ohyama S.,Ishinishi N. (1986). Studies concerning carcinogenesis of diesel particulate extracts following intratracheal instillation, subcutaneous injection, or skin application. Dev. Toxicol. Environ. Sci. 13, 235–252 [cyt. za: IARC 2014].
  • 84. Kupczewska-Dobecka M. (2008). Formaldehyd. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego [Formaldehyde]. Podstawy i Metody Oceny Środowiska Pracy [Principles and Methods of Assessing the Working Environment] 3(57), 51–125.
  • 85. Kwiatkowski K., Żółtowski B. (2005). Pomiary składu spalin silników spalinowych [Measurements of Engine Exhaust Gas Components]. Zeszyty Naukowe Akademii Morskiej [Scientific Journals of the Maritime University of Szczecin] 5(77), 361–369.
  • 86. Lamb C.M., Hazari M.S., Haykal-Coates N., Carll A.P., Krantz Q.T., King C., Winsett D.W., Cascio W.E., Costa D.L., Farraj A.K. (2012). Divergent electrocardiographic responses to whole and particlefree diesel exhaust inhalation in spontaneously hypertensive rats. Toxicol. Sci. 125, 558–568.
  • 87. Lebrecht G., Czerczak S. Hanke W., Szymczak W. (1997). Spaliny silnika Diesla. Wytyczne szacowania ryzyka zdrowotnego dla czynników rakotwórczych. Łódź, IMP, 42– 84 [publication in Polish].
  • 88. Levesque S., Surace M.J., McDonald J., Block M.L. (2011a). Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J. Neuroinflammation 8, 105–115.
  • 89. Levesque S., Taetzsch T., Lull M.E., Kodavanti U., Stadler K., Wagner A., Johnson J.A., Duke L., Kodavanti P., Surace M.J., Block M.L. (2011b). Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ. Health Perspect. 119, 1149–1155.
  • 90. Lewis T.R., Green F.H.Y., Moorman W.J., Burg J.R., Lynch D.W. (1989). A chronic inhalation toxicity study of diesel-engine emissions and coal-dust, alone and combined. J. Am. Coll. Toxicol. 8, 345-375.
  • 91. Li C., Li X., Jigami J., Hasegawa C., Suzuki A.K., Zhang Y., Fujitani Y., Nagaoka K., Watanabe G., Taya K. (2012). Effect of nanoparticle-rich diesel exhaust on testosterone biosynthesis in adult male mice. Inhal. Toxicol. 24, 599–608.
  • 92. Li C., Taneda S., Taya K., Watanabe G., Li X., Fujitani Y., Ito Y., Nakajima T., Suzuki A.K. (2009a). Effects of inhaled nanoparticle-rich diesel exhaust on regulation of testicular function in adult male rats. Inhal. Toxicol. 21, 803–811.
  • 93. Li C., Taneda S., Taya K., Watanabe G., Li X., Fujitani Y., Nakajima T., Suzuki A.K. (2009b). Effects of in utero exposure to nanoparticle-rich diesel exhaust on testicular function in immature male rats. Toxicol. Lett. 185, 1–8.
  • 94. Li Y.J., Takizawa H., Azuma A., Kohyama T., Yamauchi Y., Takahashi S., Yamamoto M., Kawada T., Kudoh S., Sugawara I. (2008). Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin. Immunol. 128, 366–373.
  • 95. Lucking A.J., Lundbäck M., Barath S.L., Mills N.L., Sidhu M.K., Langrish J.P., Boon N.A., Pourazar J., Badimon J.J., GerlofsNijland M.E., Cassee F.R., Boman C., Donaldson K., Sandstrom T., Newby D.E., Blomberg A. (2011). Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123, 1721–1728.
  • 96. Lundbäck M., Mills N.L., Lucking A., Barath S., Donaldson K., Newby D.E., Sandström T., Blomberg A. (2009). Experimental exposure to diesel exhaust increases arterial stiffness in man. Part. Fibre Toxicol. 6, 7.
  • 97. Maejima K., Tamura K., Nakajima T., Taniguchi Y., Saito S., Takenaka H. (2001). Effects of the inhalation of diesel exhaust, Kanto loam dust, or diesel exhaust without particles on immune responses in mice exposed to Japanese cedar (Cryptomeria japonica) pollen. Inhal. Toxicol. 13, 1047–1063.
  • 98. Matsumoto A., Hiramatsu K., Li Y., Azuma A., Kudoh S., Takizawa H., Sugawara I. (2006). Repeated exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic responses in mice. Clin. Immunol. 121, 227–235.
  • 99. Mauderly J., Snipes M., Barr E., Belinsky S.A., Bond J.A., Brooks A.L., Chang I.-Y., Cheng Y.S., Gillett N.A., Griffith W.C., Henderson R.F., Mitchell C.E., Nikula K.J. (1994). Pulmonary toxicity of inhaled diesel exhaust and carbon black in chronically exposed rats. Research Report Number 68, Health Effects Institute [cyt. za: IARC 2014].
  • 100. Mauderly J.L., Jones R.K., Griffith W.C., Henderson R.F., McClellan R.O. (1987). Diesel exhaust is a pulmonary carcinogen in rats exposed chronically by inhalation. Fundam. Appl. Toxicol. 9, 208–221.
  • 101. Mauderly J.L., Banas D.A., Griffith W.C., Hahn F.F., Henderson R.F., McClellan R.O. (1996). Diesel exhaust is not a pulmonary carcinogen in CD-1 mice exposed under conditions carcinogenic to F344 rats. Fundam. Appl. Toxicol. 30, 233– 242.
  • 102. Mauderly J.L., Gillett N.A., Henderson R.F., Jones R.K., McClellan R.O. (1988). Relationships of lung structural and functional changes to accumulation of diesel exhaust particles. [In:] J. Dodgson, R.I. McCallum, M.R. Bailey [Eds.]. Inhaled particles VI: proceedings of an international symposium and workshop on lung dosimetry. UK, Cambridge, Ann. Occup. Hyg. 32(1), 659–669 [cyt. za: Taxell, Santonen 2016].
  • 103. Mauderly J.L., Jones R.K., McClellan R.O., Henderson R.F., Griffith W.C. (1986). Carcinogenicity of diesel exhaust inhaled chronically by rats. Dev. Toxicol. Environ. Sci. 13, 397–409 [cyt. za: IARC 2014].
  • 104. Mayer A., Czerwinski J., Wichser A., Ulrich A., Kasper M., Mooney J. (2010). Metal-oxide particles in combustion engine exhaust. SAE Technical Papers. DOI: https://doi. org/10.4271/2010-01-0792 [cyt. za: Steiner i in. 2016].
  • 105. McClellan R.O., Hesterberg T.W., Wall J.C. (2012). Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology. Regul. Toxicol. Pharmacol. 63, 225–258 [cyt. za: Steiner i in. 2016] McClellan R.O., Bice D.E., Cuddihy R.G., Gillett N.A., Henderson R.F., Jones R.K., Mauderly J.J., Pickrell J.A., Shami S.G., Wolff R.K. (1986). Health effects of diesel exhaust. [In:] S.D. Lee, T. Schneider, L.D. Grant, P.J. Verkerk [Eds.]. Aerosols: research, risk assessment and control strategies: proceedings of the second U.S.-Dutch international symposium, May 1985. Williamsburg, Virginia. Chelsea, Michigan: Lewis Publishers Inc., 597–615 [cyt. za: Taxell, Santonen 2016].
  • 106. McDonald J.D., Campen M.J., Harrod K.S., Seagrave J., Seilkop S.K., Mauderly J.L. (2011). Engineoperating load influences diesel exhaust composition and cardiopulmonary and immune responses. Environ. Health Persp. 119, 1136–1141.
  • 107. McDonald J.D., Doyle-Eisele M., Gigliotti A., Miller R.A., Seilkop S., Mauderly J.L., Seagrave J., Chow J., Zielinska B. (2012). HEI Health Review Committee. Part 1. Biologic responses in rats and mice to subchronic inhalation of diesel exhaust from U.S. 2007-compliant engines: report on 1-, 3-, and 12-month exposures in the ACES bioassay. Res. Rep. Health Eff. Inst. 166, 9–120 [cyt. za: Taxell, Santonen 2016].
  • 108. McDonald J.D., Doyle-Eisele M., Seagrave J., Gigliotti A.P., Chow J., Zielinska B., Mauderly J.L., Seilkop S.K., Miller R.A. (2015). HEI Health Review Committee. Part 1. Assessment of carcinogenicity and biologic responses in rats after lifetime inhalation of new-technology diesel exhaust in the ACES bioassay. Res. Rep. Health Eff. Inst. 184, 9–44, discussion 141–171.
  • 109. McDonald J.D., Harrod K.S., Seagrave J.C., Seilkop S.K., Mauderly J.L. (2004). Effects of low sulfur fuel and a catalyzed particle trap on the composition and toxicity of diesel emissions. Environ. Health Persp. 112, 1307–1312.
  • 110. Merkisz J. (1997). Emisja cząstek stałych przez silniki spalinowe o zapłonie samoczynnym. Poznań, WPP [publication in Polish].
  • 111. Merkisz J., Piekarski W., Słowik T. (2005). Motoryzacyjne zanieczyszczenie środowiska. Lublin, Wydawnictwo Uniwersytetu Przyrodniczego [publication in Polish].
  • 112. Miller M.R., McLean S.G., Duffin R., Lawal A.O., Araujo J.A., Shaw C.A., Mills N.L., Donaldson K., Newby D.E., Hadoke P.W. (2013). Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part. Fibre Toxicol. 10, 61.
  • 113. Mills N.L., Miller M.R., Lucking A.J., Beveridge J., Flint L., Boere A.J., Fokkens P.H., Boon N.A., Sandstrom T., Blomberg A., Duffin R., Donaldson K., Hadoke P.W., Cassee F.R., Newby D.E .(2011). Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur. Heart J. 32, 2660–2671.
  • 114. Mills N.L., Törnqvist H., Robinson S.D., Gonzalez M., Darnley K., MacNee W., Boon N.A., Donaldson K., Blomberg A., Sandstrom T., Newby D.E. (2005). Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 112, 3930–3936.
  • 115. Mohr U., Ernst H., Roller M., Pott F. (2006). Pulmonary tumor types induced in Wistar rats of the so-called “19-dust study”. Exp. Toxicol. Pathol. 58, 13–20.
  • 116. Montreuil C.N., Ball J.C., Gorse R.A.Jr, Young W.C. (1992). Solvent extraction efficiencies of mutagenic components from diesel particles. Mutat. Res. 282(2), 89–92. [cyt. za: ROC 1998].
  • 117. Mudway I.S., Stenfors N., Duggan S.T., Roxborough H., Zielinski H., Marklund S.L., Blomberg A., Frew A.J., Sandstrom T., Kelly F.J. (2004). A in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch. Biochem. Biophys. 423, 200–212.
  • 118. Nauss K.M. (1997). Diesel exhaust: a critical analysis of emissions, exposure, and health effects. Summary of a Health Effects Institute (HEI) special report HEI Diesel Working Group. DieselNet Technical Report.
  • 119. Nesnow S., Evans C., Stead A., Creason J., Slaga T.J., Triplett L.L. (1982a). Skin carcinogenesis studies of emission extracts. Dev. Toxicol. Environ. Sci. (Netherlands), volume 10, Conference: EPA diesel emissions symposium, Raleigh, NC, USA, 5 Oct 1981, 295–320 [cyt. za: IARC 2014].
  • 120. Nesnow S., Triplett L.L., Slaga T.J. (1982b). Comparative tumour-initiating activity of complex mixtures from environmental particulate emissions on SENCAR mouse skin. J. Natl. Cancer. Inst. 68, 829–834.
  • 121. Nesnow S., Triplett L.L., Slaga T.J. (1983). Mouse skin tumour initiation-promotion and complete carcinogenesis bioassays: mechanisms and biological activities of emission samples. Environ. Health Perspect. 47, 255–268.
  • 122. Nightingale J.A., Maggs R., Cullinan P., Donnelly L.E., Rogers D.F., Kinnersley R., Chung K.F., Barnes P.J., Ashmore M., Newman-Taylor A. (2000). Airway inflammation after controlled exposure to diesel exhaust particulates. Am. J. Respir. Crit. Care Med. 162, 161–166.
  • 123. Nikula K.J., Snipes M.B., Barr E.B., Griffith W.C., Henderson R.F., Mauderly J.L. (1995). Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Fundam. Appl. Toxicol. 25, 80–94.
  • 124. NIOSH Pocket Guide [dostęp: 14.01.2019; https://www.cdc. gov/niosh/npg/npgd0207.html].
  • 125. Nordenhäll C., Pourazar J., Ledin M.C., Levin J.O., Sandström T., Ädelroth E. (2001). Diesel exhaust enhances airway responsiveness in asthmatic subjects. Eur. Respir. J. 17, 909– 915.
  • 126. NTP (2014). National Toxicology Program, Department of Health and Human Services. Diesel exhaust particulates. Report on Carcinogens, Fourteenth Edition.
  • 127. Okuda T., Schauer J.J, Olson M.R., Shafer M.M., Rutter A.P., Walz K.A.,Morschauser P.A. (2009). Effects of a platinum– cerium bimetallic fuel additive on the chemical composition of diesel engine exhaust particles. Energy Fuels 23, 4974–4980 [cyt. za: Steiner i in. 2016].
  • 128. Olsson A.C., Gustavsson P., Kromhout H., Peters S., Vermeulen R., Brüske I., Pesch B., Siemiatycki J., Pintos J., Brüning T., Cassidy A., Wichmann H.E., Consonni D., Landi M.T., Caporaso N., Plato N., Merletti F., Mirabelli D., Richiardi L., Jöckel K.H., Ahrens W., Pohlabeln H., Lissowska J., SzeszeniaDabrowska N., Zaridze D., Stücker I., Benhamou S., Bencko V., Foretova L., Janout V., Rudnai P., Fabianova E., Dumitru R.S., Gross I.M., Kendzia B., Forastiere F., Bueno-de-Mesquita B., Brennan P., Boffetta P., Straif K. (2011). Exposure to diesel motor exhaust and lung cancer risk in a pooled analysis from case-control studies in Europe and Canada. Am. J. Respir. Crit. Care Med. 183(7), 941–948.
  • 129. Ono N., Oshio S., Niwata Y., Yoshida S., Tsukue N., Sugawara I., Takano H., Takeda K. (2007). Prenatal exposure to diesel exhaust impairs mouse spermatogenesis. Inhal. Toxicol. 19, 275–281.
  • 130. Ono N, Oshio S, Niwata Y, Yoshida S, Tsukue N, Sugawara I, Takano H, Takeda K. (2008). Detrimental effects of prenatal exposure to filtered diesel exhaust on mouse spermatogenesis. Arch. Toxicol. 82, 851–859.
  • 131. Oravisjärvi K., Pietikäinen M., Ruuskanen J., Niemi S., Laurén M., Voutilainen A., Keiski R.L., Rautio A. (2014). Diesel particle composition after exhaust after-treatment of an off-road diesel engine and modeling of deposition into the human lung. J. Aerosol Sci. 69, 32–47.
  • 132. Pattle R.E., Stretch H., Burgess F., Sinclair K., Edginton J.A. (1957). The toxicity of fumes from a diesel engine under four different running conditions. Br. J. Ind. Med. 14, 47–55.
  • 133. Pepelko W.E., Mattox J.K., Yang Y.Y., Moore W. Jr. (1980). Pulmonary function and pathology in cats exposed 28 days to diesel exhaust. J. Environ. Pathol. Toxicol. 4, 449–457.
  • 134. Pepelko W.E. (1982). Effects of 28 days exposure to diesel engine emissions in rats. Environ. Res. 27, 16–23.
  • 135. Peretz A., Peck E.C., Bammler T.K., Beyer R.P., Sullivan J.H., Trenga C.A., Srinouanprachnah S., Farin F.M., Kaufman J.D. (2007). Diesel exhaust inhalation and assessment of peripheral blood mononuclear cell gene transcription effects: an exploratory study of healthy human volunteers. Inhal. Toxicol. 19, 1107– 1119.
  • 136. Peretz A., Sullivan J.H., Leotta D.F., Trenga C.A., Sands F.N., Allen J., Carlsten C., Wilkinson C.W., Gill E.A., Kaufman J.D. (2008). Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ. Health Perspect. 116, 937–942.
  • 137. Pettit A.P., Brooks A., Laumbach R., Fiedler N., Wang Q., Strickland P.O., Madura K., Zhang J., Kipen H.M. (2012). Alteration of peripheral blood monocyte gene expression in humans following diesel exhaust inhalation. Inhal. Toxicol. 24, 172–181.
  • 138. Piekarska K. (2008). Modyfikacje testu Salmonella do oceny mutagenności pyłowych zanieczyszczeń powietrza atmosferycznego [Modified Salmonella assays for mutagenicity assessment of atmospheric dust pollutants]. Prace Naukowe Instytutu Inżynierii Ochrony Środowiska Politechniki Wrocławskiej, Oficyna Wydawnicza Politechniki Wrocławskiej.
  • 139. Popovicheva O., Engling G., Lin K.-T., Persiantseva N., Timofeev M., Kireeva E., Völk P., Hubert A., Wachtmeister G. (2015). Diesel/biofuel exhaust particles from modern internal combustion engines: microstructure, composition, and hygroscopicity. Fuel 157, 232–239 [cyt. za: Steiner i in. 2016].
  • 140. Pośniak M. (2003). Spaliny silników Diesla – zasady i metody oceny narażenia zawodowego [Diesel combustion exhaust: principles and methods of occupational exposure assessment]. Medycyna Pracy 54(4), 389–393.
  • 141. Pośniak M., Jankowska E., Szewczyńska M, Zapór L. (2010). Zagrożenia spalinami silników Diesla. Warszawa, Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy [publication in Polish].
  • 142. Pośniak M., Makhniashvili I., Kozieł E., Kowalska J. (2001). Spaliny silników Diesla – zagrożenie dla zdrowia pracowników [Diesel Exhaust fumes — a hazard for human health]. Bezpieczeństwo Pracy – Nauka i Praktyka [Occupational Safety – Science and Practice] 9, 11–14.
  • 143. Pott F., Roller M. (2005). Carcinogenicity study with nine-teen granular dusts in rats. Eur. J. Oncol. 10, 249–281,
  • 144. Pronk A., Coble J., Stewart P.A. (2009). Occupational exposure to diesel engine exhaust: a literature review. J. Expo. Sci. Environ. Epidemiol. 19(5), 443–457 [cyt. za: Hesterberg i in. 2012].
  • 145. Putaud J.P., Van Dingenen R., Baltensperger U. i in. (2002). A European Aerosol Phenomenology. Physical and chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. EUR 20411 EN JRC/IES/ CCU (Joint Research Centre Institute for Environmental and Sustainability). Italy, Ispra [cyt. za: Mangelsdorf I., Voss JU., Heinrich U. (2004). Effects of Diesel Exhaust on the Lung – Influence of Particle Size and Composition. Fraunhofer Institut Toxicologie und Experimentelle Medizin].
  • 146. Quan C., Sun Q., Lippmann M., Chen L.C. (2010). Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal. Toxicol. 22, 738–753.
  • 147. Randerath E., Watson W.P., Zhou G.D., Chang J., Randerath K. (1995). Intensification and depletion of specific bulky renal DNA adducts (I-compounds) following exposure of male F344 rats to the renal carcinogen ferric nitrilotriacetate (FeNTA). Mutat. Res. 341(4), 265–279.
  • 148. Reed M.D., Gigliotti A.P., McDonald J.D., Seagrave J.C., Seilkop S.K., Mauderly J.L. (2004). Health effects of subchronic exposure to environmental levels of diesel exhaust. Inhal. Toxicol. 16, 177–193.
  • 149. Riedl M.A., Diaz-Sanchez D., Linn W.S., Gong H. Jr, Clark K.W., Effros R.M., Miller J.W., Cocker D.R., Berhane K.T. (2012). HEI Health Review Committee. Allergic inflammation in the human lower respiratory tract affected by exposure to diesel exhaust. Res. Rep. Health Eff. Inst. 165, 5–43 [cyt. za: Taxell, Santonen 2016].
  • 150. Risom L., Dybdahl M., Bornholdt J., Vogel U., Wallin H., Møller P., Loft S. (2003). Oxidative DNA damage and defence gene expression in the mouse lung after short-term exposure to diesel exhaust particles by inhalation. Carcinogenesis 24, 1847–1852.
  • 151. Risom M.J., Iltis R., Moore W. (1980). Altered function and histology in guinea pigs after inhalation of diesel exhaust. Environ. Res. 22, 285–297.
  • 152. Rissler J., Swietlicki E., Bengtsson A., Boman C., Pagels J., Sandström T., Blomberg A., Löndahl J. (2012). Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. J. Aerosol Sci. 48,18–33.
  • 153. ROC, ROC Background Document for Diesel Exhaust Particulates (1998). Report on carcinogens background document for Diesel exhaust particulates. December 2-3.
  • 154. Rozporządzenie Ministra Zdrowia z dnia 24 lipca 2012 r. w sprawie substancji chemicznych, ich mieszanin, czynników lub procesów technologicznych o działaniu rakotwórczym lub mutagennym w środowisku pracy. DzU 2012, poz. 890.
  • 155. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 z dnia 16.12.2008 r. w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin, zmieniające i uchylające dyrektywy 67/648/EWG i 1999/45/WE oraz zmieniające rozporządzenie WE nr 1907/2006 (tzw. rozporządzenie CLP). Dz. Urz. UE L 353 z dnia 31.12.2008 r. ze zm. [Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006].
  • 156. RTECS, Registry of Toxic Effects of Chemical Substances (2014). Washington DC, National Institute for Occupational Safety and Health.
  • 157. Saber A.T., Bornholdt J., Dybdahl M., Sharma A.K., Loft S., Vogel U., Wallin H. (2005). Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation. Arch. Toxicol. 79, 177–182.
  • 158. Saber A.T., Lamson J.S., Jacobsen N.R., Ravn-Haren G., Hougaard K.S., Nyendi A.N., Wahlberg P., Madsen A.M., Jackson P., Wallin H., Vogel U. (2013). Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS One 8, e69020.
  • 159. Salvi S., Blomberg A., Rudell B., Kelly F., Sandstrom T., Holgate S., Frew A. (1999). Acute Inflammatory Responses in the Airways and Peripheral Blood After Short-Term Exposure to Diesel Exhaust in Healthy Human Volunteers. Am. J. Respir. Crit. Care Med. 159, 702–709.
  • 160. Salvi S.S., Nordenhall C., Blomberg A., Rudell B., Pourazar J., Kelly F.J., Wilson S., Sandstrom T., Holgate S.T., Frew A.J. (2000). Acute exposure to Diesel exhaust increases IL-8 and GRO and production in healthy human Airways. Am. J. Respir. Crit. Care Med. 161, 550–557.
  • 161. Savard S., Otson R., Douglas G.R. (1992). Mutagenicity and chemical analysis of sequential organic extracts of airborne particulates. Mutat. Res. 276(1-2), 101–115 [cyt. za: ROC 1998].
  • 162. Schenker M.B., Kado N.Y., Hammond S.K., Samuels S.J., Woskie S.R., Smith T.J. (1992). Urinary mutagenic activity in workers exposed to diesel exhaust. Environ. Res. 57, 133–148.
  • 163. Schoket B., Poirier M.C., Mayer G., Torok G., KolozsiRingelhann A., Bognar G., Bigbee W.L., Vincze I. (1999). Biomonitoring of human genotoxicity induced by complex occupational exposures. Mutat. Res. 445, 193–203.
  • 164. SCOEL (2016). Opinion from the scientific committee on occupational exposure limits for Diesel engine exhaust. SCOEL/OPIN/2016-403.
  • 165, Seagrave J., McDonald J.D., Reed M.D., Seilkop S.K., Mauderly J.L. (2005). Responses to subchronic inhalation of low concentrations of diesel exhaust and hardwood smoke measured in rat bronchoalveolar lavage fluid. Inhal. Toxicol. 17, 657–670.
  • 166. Sharkhuu T., Doerfler D.L., Krantz Q.T., Luebke R.W., Linak W.P., Gilmour M.I. (2010). Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses. Toxicol. Lett. 196, 12–20.
  • 167. Silverman D.T., Sarmanic CM., Lubin JH., Blair A.E.,Stewart P.A., Vermeulen R., Coble J.B., Rothman N.,Schleiff P.L., Travis W.D., Ziegler R.G., Wacholder S., Attfield M.D. (2012). The Diesel exhaust in miners study: a nested case-control study of lung cancer and diesel exhaust. J. Natl. Cancer Inst. 104, 855–868.
  • 168. Starek A. (2005). Ditlenek azotu. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego. Podstawy i Metody Oceny Środowiska Pracy 3(45), 49–64.
  • 169. Steenland K., Deddens J., Stayner L. (1998). Diesel exhaust and lung cancer in the trucking industry: exposure-response analyses and risk assessment. Am. J. Ind. Med. 34, 220–228.
  • 170. Steiner S., Bisig C., Fink A.P., Rothen-Rutishauser B. (2016). Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch. Toxicol. 90, 1541– 1553.
  • 171. Stenfors N., Nordenhäll C., Salvi S.S., Mudway I., Söderberg M., Blomberg A., Helleday R., Levin J.O., Holgate S.T., Kelly F.J., Frew A.J., Sandström T. (2004). Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. Eur. Respir. J. 23., 82–86.
  • 172. Stevens T., Krantz Q.T., Linak W.P., Hester S., Gilmour M.I. (2008). Increased transcription of immune and metabolic pathways in naive and allergic mice exposed to diesel exhaust. Toxicol. Sci. 102, 359–370.
  • 173. Stinn W., Teredesai A., Anskeit E., Rustemeier K., Schepers G., Schnell P., Haussmann H.J., Carchman R.A., Coggins C.R., Reininghaus W. (2005). Chronic nose-only inhalation study in rats, comparing room-aged sidestream cigarette smoke and diesel engine exhaust. Inhal. Toxicol. 17, 549–576.
  • 174. Sugamata M., Ihara T., Sugamata M., Takeda K. (2006a). Maternal exposure to diesel exhaust leads to pathological similarity to autism in newborns. J. Health Sci. 52, 486–488. 183. Sugamata M., Ihara T., Takano H., Oshio S., Takeda K. (2006b). Maternal diesel exhaust exposure damages newborn murine brains. J. Health Sci. 52, 82–84.
  • 175. Summary Report (2018). Technical seminar concerning a 2nd proposal amending the Carcinogens and Mutagenes Directive 2004/37/EC. 14 September 2018.
  • 176. Sunil V.R., Patel K.J., Mainelis G., Turpin B.J., Ridgely S., Laumbach R.J., Kipen H.M., Nazarenko Y., Veleeparambil M., Gow A.J., Laskin J.D., Laskin D.L. (2009). Pulmonary effects of inhaled diesel exhaust in aged mice. Toxicol. Appl. Pharmacol. 241, 283–293.
  • 177. Suzuki T., Oshio S., Iwata M., Saburi H., Odagiri T., Udagawa T., Sugawara I., Umezawa M., Takeda K. (2010). In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice. Part. Fibre Toxicol. 7, 7.
  • 178. Tanaka M., Aoki Y., Takano H., Fujitani Y., Hirano S., Nakamura R., Sone Y., Kiyono M., Ichinose T., Itoh T., Inoue K. (2013). Effects of exposure to nanoparticle-rich or -depleted diesel exhaust on allergic pathophysiology in the murine lung. J. Toxicol. Sci. 38, 35–48.
  • 179. Taxell P., Santonen T. (2017). Diesel engine exhaust: basis for occupational exposure limit value. Toxicological Sciences 158(2), 243–251.
  • 180. Taxell P., Santonen T. (2016). Diesel engine exhaust. The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. University of Gothenburg, 49(6), 1–156.
  • 181. Tong H., Rappold A.G., Caughey M., Hinderliter A.L., Graff D.W., Berntsen J.H., Cascio W.E., Devlin R.B., Samet J.M.(2014). Cardiovascular effects caused by increasing concentrations of diesel exhaust in middle-aged healthy GSTM1 null human volunteers. Inhal. Toxicol. 26, 319–326.
  • 182. Törnqvist H., Mills N.L., Gonzalez M., Miller M.R., Robinson S.D., Megson I.L., Macnee W., Donaldson K., Söderberg S., Newby D.E., Sandström T., Blomberg A. (2007). Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am. J. Respir. Crit. Care Med. 176, 395–400.
  • 183. Tsukue N., Kato A., Ito T., Sugiyama G., Nakajima T. (2010). Acute effects of diesel emission from the urea selective catalytic reduction engine system on male rats. Inhal. Toxicol. 22, 309–320.
  • 184. Tsukue N., Toda N., Tsubone H., Sagai M., Jin W.Z., Watanabe G., Taya K., Birumachi J., Suzuki A.K. (2001). Diesel exhaust (DE) affects the regulation of testicular function in male Fischer 344 rats. J. Toxicol. Environ. Health A. 63, 115–126.
  • 185. Tsukue N., Tsubone H., Suzuki A.K. (2002). Diesel exhaust affects the abnormal delivery in pregnant mice and the growth of their young. Inhal. Toxicol. 14, 635–651.
  • 186. Ulfvarson U., Alexandersson R., Aringer L., Svensson E., Hedenstierna G., Hogstedt C., Holmberg B., Rosén G., Sorsa M. (1987). Effects of exposure to vehicle exhaust on health. Scand. J. Work Environ. Health 13, 505–512.
  • 187. van Berlo D., Albrecht C., Knaapen A.M., Cassee F.R., GerlofsNijland M.E., Kooter I.M., Palomero-Gallagher N., Bidmon H.J., van Schooten F.J., Krutmann J., Schins R.P. (2010). Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain. Arch. Toxicol. 84, 553–562.
  • 188. Vermeulen R., Silverman D.T., Garshick E., Vlaanderen J., Portengen L., Steenland K. (2014). Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ. Health Perspect. 122, 172–177.
  • 189. Villarini M., Moretti M., Fatigoni C., Agea E., Dominici L., Mattioli A., Volpi R., Pasquini R. (2008). Evaluation of primary DNA damage, cytogenetic biomarkers and genetic polymorphisms for CYP1A1 and GSTM1 in road tunnel construction workers. J. Toxicol. Environ. Health A. 71, 1430–1439.
  • 190. Wang T., El Kebir D., Blaise G. (2003). Inhaled nitric oxide in 2003: a review of its mechanisms of action. Can. J. Anaesth. 50, 839–846.
  • 191. Watanabe N, Ohsawa M. (2002). Elevated serum immunoglobulin E to Cryptomeria japonica pollen in rats exposed to diesel exhaust during fetal and neonatal periods. BMC Pregnancy Childbirth 2, 1–9.
  • 192. Watanabe N, Oonuki Y. (1999). Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats. Environ. Health Perspect. 107, 539–544.
  • 193. Watanabe N. (2005). Decreased number of sperms and Sertoli cells in mature rats exposed to diesel exhaust as fetuses. Toxicol. Lett. 155, 51–58.
  • 194. Wei T., Wang T.T., Rappaport S.M. (1980). Diesel emissions and Ames test: a commentary. J. Air Poll. Control. Assoc. 30, 267–271.
  • 195. White H.J., Garg B.D. (1981). Early pulmonary response of the rat lung to inhalation of high concentration of diesel particles. J. Appl. Toxicol. 1, 104–110.
  • 196. WHO (1996). Diesel fuel and exhaust emissions. Environmental Health Criteria 171. World Health Organization. Switzerland, Geneva.
  • 197. WHO (1997). Nitrogen oxides. Environmental Health Criteria 188. World Health Organization. Switzerland, Geneva.
  • 198. Wierzbicka A., Nilsson P.T., Rissler J., Sallsten G., Xu Y.Y., Pagels J.H., Albin M., Österberg K., Strandberg B., Eriksson A., Bohgard M., Bergemalm-Rynell K., Gudmundsson A. (2014). Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies. Atmos. Environ. 86, 212–219.
  • 199. Willems M.I., de Raat W.K., Wesstra J.A., Bakker G.L., Dubois G., van Dokkum W. (1989). Urinary and faecal mutagenicity in car mechanics exposed to diesel exhaust and in unexposed office workers. Mutat. Res. 222, 375–391.
  • 200. Win-Shwe T.T., Yamamoto S., Fujitani Y., Hirano S., Fujimaki H. (2008). Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology 29, 940–947.
  • 201. Win-Shwe T.T., Yamamoto S., Fujitani Y., Hirano S., Fujimaki H. (2012). Nanoparticle-rich diesel exhaust affects hippocampaldependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology 6, 543–553.
  • 202. Yokota S., Mizuo K., Moriya N., Oshio S., Sugawara I., Takeda K. (2009). Effect of prenatal exposure to diesel exhaust on dopaminergic system in mice. Neurosci. Lett. 449, 38–41.
  • 203. Yokota S., Moriya N., Iwata M., Umezawa M., Oshio S., Takeda K. (2013). Exposure to diesel exhaust during fetal period affects behavior and neurotransmitters in male offspring mice. J. Toxicol. Sci. 38, 13–23.
  • 204. Yoshida S., Sagai M., Oshio S., Umeda T., Ihara T., Sugamata M., Sugawara I., Takeda K. (1999). Exposure to diesel exhaust affects the male reproductive system of mice. Int. J. Androl. 22, 307–315.
  • 205. Zaciera M., Kurek J., Złotkowska R., Dzwonek L. (2009). Zalecenia dotyczące postępowania lekarskiego w odniesieniu do pracowników zawodowo narażonych na spaliny z silnika diesla. Instytut Medycyny Pracy i Zdrowia Środowiskowego. Sosnowiec, Nn 12/MP/2009/86/1006 [publication in Polish].
  • 206. Zhu J.Y., Lee K.O,. Yozgatligil A., Choi M.Y. (2005). Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates. Proc. Combust. Inst. 30, 2781–2789, [cyt. za: Steiner i in. 2016].
  • 207. Zielinska B., Sagebiel J., McDonald J.D., Whitney K., Lawson D.R. (2004). Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. J. Air Waste Manage. Assoc. 54(9), 1138–1150.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3212466e-d7cf-488e-8ace-edbe4438be8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.