PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sepiolite-based adsorbents for carbon dioxide capture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sepiolite and the sepiolite-based materials were studied in terms of carbon dioxide adsorption. The pore structure and the surface characterization of the obtained materials were specified based on adsorption-desorption isotherms of nitrogen measured at –196°C and carbon dioxide at 0°C. The specifi c surface area (SSA) was calculated accord-ing to the BET equation. The pore volume was estimated using the DFT method. Pristine sepiolite has shown the following value of SSA and CO2 uptake at 0°C – 105 m2/g and 0.27 mmol/g, respectively. The highest value of these parameters was found for material obtained by KOH activation of mixture sepiolite and molasses (MSEP2) – 676 m2/g and 1.49 mmol/g. Sample MSEP2 also indicated the highest value of total pore volume and micropores volume with a diameter up to 0.8 nm.
Słowa kluczowe
Rocznik
Strony
1--6
Opis fizyczny
Bibliogr 54 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. United States Environmental Protection Agency USEPA (2019). Greenhouse Gas Emissions. Retrieved May 26, 2020, from https://www.epa.gov/ghgemissions/overview-greenhouse-gases#carbon-dioxide.
  • 2. Parshetti, G.K., Chowdhury, S. & Balasubramanian, R. (2015). Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 148, 246–254. DOI: 10.1016/j. fuel.2015.01.032.
  • 3. Babu, D.J., Bruns, M. & Schneider, J.J. (2017). Unprecedented CO2 uptake in vertically aligned carbon nanotubes. Carbon 125, 327–335. DOI: 10.1016/j.carbon.2017.09.047.
  • 4. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P. & Gupta, R. (2012). Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463. DOI: 10.1021/ie200686q.
  • 5. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D. & Zhong, Z. (2014). Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518. DOI: 10.1039/C4EE01647E.
  • 6. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A 129, 394–401. DOI: 10.12693/APhysPolA.129.394.
  • 7. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Srenscek-Nazzal, J., Morawski, A.W., Wrobel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorpt. Sci. Technol. 36, 478–492. DOI: 10.1177/0263617417704527.
  • 8. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.
  • 9. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Piróg, E., Jędrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater., 1–11. DOI: 10.1155/2017/7359591.
  • 10. Li, J.R., Kuppler, R.J. & Zhou, H.C. (2009). Selective gas adsorption and separation in metal-organic Framework. Chem. Soc. Rev. 38, 1477–1504. DOI: 10.1039/B802426J.
  • 11. Liu, J., Thallapally, P.K., McGrail, B.P., Brown, D.R. & Liu, J. (2012). Progress in adsorption-based CO2 capture by metal-organic Framework. Chem. Soc. Rev. 41, 2308–2322. DOI: 10.1039/C1CS15221A.
  • 12. Kukulka, W., Cendrowski, K., Michalkiewicz, B., & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 absorption. Rsc. Adv. 9, 18527–18537. DOI: 10.1039/C9RA01786K.
  • 13. D’Alessandro, D.M., Smit, B. & Long J.R. (2010). Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. Engl. 49, 6058–6082. DOI: 10.1002/anie.201000431.
  • 14. Marsh, H. & Reinoso F.R. (2006). Activated Carbon. London, England: Elsevier Science.
  • 15. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j. jcou.2017.01.006.
  • 16. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data. 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.
  • 17. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys. Pol. A. 129, 402–404. DOI: 10.12693/APhysPolA.129.402.
  • 18. Sibera, D., Narkiewicz, U., Kapica, J., Serafin, J., Michalkiewicz, B., Wrobel, R.J. & Morawski, A.W. Preparation and characterisation of carbon spheres for carbon dioxide capture (2019). J. Porous Mater. 26, 19–27. DOI: 10.1007/s10934-018-0601-8.
  • 19. Shi, X., Gong, J., Kierzek, K., Michalkiewicz, B., Zhang, S., Chu, P.K., Chen, X., Tang, T. & Mijowska, E. (2019) Multifunctional nitrogen-doped nanoporous carbons derived from metal-organic frameworks for efficient CO2 storage and high-performance lithium-ion batteries. New J. Chem. 43, 10405–10412. DOI: doi.org/10.1039/C9NJ01542F.
  • 20. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ASC Sustain. Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.
  • 21. Melo, P., Debecker, D.P. (2019). Combining CO2 capture and catalytic conversion to methane. Waste Dispos. Sustain. Energy 1, 53–65. DOI: 10.1007/s42768-019-00004-0.
  • 22. Taqiu Khan, M.M., Halligudi, S.B., Shukla, S. (1989). Reduction of CO2 by molecular hydrogen to formic acid and formaldehyde and their decomposition to CO and H2O. J. Mol. Catal. 57, 47–60. DOI: 10.1016/0304-5102(89)80126-9.
  • 23. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Util. 5, 47–52. DOI: 10.1016/j. jcou.2013.12.004.
  • 24. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor M. & Miller H.L. (2007). Climate Change 2007: The Physical Science Basis Exit. Contribution of Working Group I to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press.
  • 25. Shalini, A. & Prasad, R. (2016). An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 6, 108668–108688. DOI: 10.1039/C6RA20450C.
  • 26. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.
  • 27. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal., A. 277, 147–153. DOI: 10.1016/j. apcata.2004.09.005.
  • 28. Michalkiewicz, B. & Kałucki, K. (2002). Direct conversion of methane into methanol formaldehyde and organic acids. Przem. Chem. 81, 165–170.
  • 29. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. – Chem. Zvesti. 59, 403–408. DOI: 10.1016/j.apcata.2004.09.005
  • 30. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. – Chem. Zvesti. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.
  • 31. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal., A. 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.
  • 32. Michalkiewicz, B., Kałucki, K. & Sośnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.
  • 33. Michalkiewicz, B., Jarosińska, M. & Łukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.
  • 34. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambitne pressure. Catal. Commun. 8, 1939–1942. DOI: 10.1016/j.catcom.2007.03.014.
  • 35. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.
  • 36. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 1–6. DOI: 10.1088/0957-4484/21/14/145308.
  • 37. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.
  • 38. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol., A. 129, 153–157. DOI: 10.12693/APhysPolA.129.153.
  • 39. Börjesson, P., Lantz, M., Andersson, J., Björnsson, L., Möller, B.F., Fröberg, M., Hanarp, P., Hulteberg, C., Iverfeldt, E., Lundgren, J., Röj, A., Svensson, H. & Zinn, E. (2016). Methane as vehicle fuel – a well to wheel analysis (METDRIV). DOI: 10.13140/rg.2.2.24258.79045
  • 40. Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.ind-crop.2013.03.004.
  • 41. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Of Hydrogen Energy 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.
  • 42. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.
  • 43. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016) Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. Int. J. Hydrogen Energy 41, 8656–8667. DOI: 10.1016/j. ijhydene.2015.12.146.
  • 44. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j. cattod.2015.11.010.
  • 45. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.
  • 46. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. 6, 397–401. DOI: 10.1515/gps-2016-0148.
  • 47. Gómez-Pozuelo, G., Sanz-Pérez, E.S., Arencibia, A., Pizarro, P., Sanz, R. & Serrano, D.P. (2019) CO2 adsorption on amine-functionalized clays. Microporous Mesoporous Mater. 282, 38–47. DOI: 10.1016/j.micromeso.2019.03.012.
  • 48. Konuklu, Y., Ersoy, O., Akar, H.B. & Erzin, F. (2020). Effect of pre-treatment methods on natural raw materials-based phase change material composites for building applications. Constr. Build Mater. 263, 1–15. DOI: 10.1016/j. conbuildmat.2020.120114.
  • 49. Ruiz-Hitzky, E., Aranda, P., Alvarez, A., Santaren, J. & Esteban-Cubillo, A. (2011). Chapter 17 – Advanced Materials and New Applications of Sepiolite and Palygorskite. Dev. Clay Sci. 3, 393–452. DOI: 10.1016/B978-0-444-53607-5.00017-7.
  • 50. Azzouz, A., Assaad, E., Ursu, A-V., Sajin, T., Nistor D. & Roy, R. (2010). Carbon dioxide retention over montmorillonite–dendrimer materials. Appl. Clay Sci. 48, 133–137. DOI: 10.1016/j.clay.2009.11.021.
  • 51. Elkhalifah, A.E.I., Bustam, M.A.B., Shariff, A.B.M. & Murugesan, T. (2014). Carbon dioxide retention on bentonite clay adsorbents modified by mono-, Di- and triethanolamine compounds. Adv. Mater. Res. 917, 115–122. DOI: 10.4028/www. scientific.net/AMR.917.115.
  • 52. Chen, Y.H. & Lu, D.L. (2015). CO2 capture by kaolinite and its adsorption mechanizm. Appl. Clay Sci. 104, 221–228. DOI: 10.1016/j.clay.2014.11.036.
  • 53. Zhou, F., Yan, C., Zhang, Y., Tan, J., Wang, H., Zhou, S. & Pu, S. (2016). Purification and defibering of a Chinese sepiolite. Appl. Clay Sci. 124, 119−126. DOI: 10.1016/j.clay.2016.02.013.
  • 54. Yuan, M., Gao, G., Hu, X., Luo, X., Huang, Y., Jin, B. & Liang, Z. (2018) Premodified Sepiolite Functionalized with Triethylenetetramine as an Effective and Inexpensive Adsorbent for CO2 Capture. Ind. Eng. Chem. Res. 57, 6189−6200. DOI: 10.1021/acs.iecr.8b00348.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32005bf2-9a6f-4b42-b768-a886a1d9a95e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.