PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive filtering-based current reconstruction in non-contact magnetic sensor array measurement system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The non-contact current measurement method with magnetic sensors has become a subject of research. Unfortunately, magnetic sensors fail to distinguish the interested magnetic field from nearby interference and suffer from gauss white noise due to the intrinsic noise of the sensor and external disturbance. In this paper, a novel adaptive filtering-based current reconstruction method with a magnetic sensor array is proposed. Interference-rejection methods based on two classic algorithms, the least-mean-square (LMS) and recursive-least-square (RLS) algorithms, are compared when used in the parallel structure and regular triangle structure of three-phase system. Consequently, the measurement range of RLS-based algorithm is wider than that of LMS-based algorithm. The results of carried out simulations and experiments show that RLS-based algorithms can measure currents with an error of around 1%. Additionally, the RLS-based algorithm can filter the gauss white noise whose magnitude is within 10% of the linear magnetic field range of the sensor.
Rocznik
Strony
697--711
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wzory
Twórcy
autor
  • University of Electronic Science and Technology of China, The Sichuan Provincial Key Lab of Power System Wide-Area Measurement and Control, Chengdu 611731, Sichuan, China
autor
  • University of Electronic Science and Technology of China, The Sichuan Provincial Key Lab of Power System Wide-Area Measurement and Control, Chengdu 611731, Sichuan, China
Bibliografia
  • [1] Amin, S. M., Wollenberg, B. F. (2005). Toward a smart grid: power delivery for the 21st century. IEEE Power & Energy Magazine, 3(5), 34-41.
  • [2] Fang, X., Misra, S., Xue, G., Yang, D. (2012). Smart Grid - The New and Improved Power Grid: A Survey. IEEE Communications Surveys & Tutorials, 14(4), 944-980.
  • [3] Farhangi, H. (2009). The path of the smart grid. IEEE Power & Energy Magazine, 8(1), 18-28.
  • [4] Chan, J.Y.C., Tse, N.C.F., Lai, L. L. (2013). A Coreless Electric Current Sensor With Circular Conductor Positioning Calibration. IEEE Transactions on Instrumentation and Measurement, 62(11), 2922-2928.
  • [5] Suzuki, Y., Yamasawa, K., Hirayabayashi, A. (2008). Analysis of a Zero-Flux Type Current Sensor Using a Hall Element. IEEE Translation Journal on Magnetics in Japan, 9(1), 165-170.
  • [6] Khawaja, A. H., Huang, Q., Chen, Y. (2019). A Novel Method for Wide Range Electric Current Measurement in Gas-Insulated Switchgears With Shielded Magnetic Measurements. IEEE Transactionson Instrumentation and Measurement, 1-11.
  • [7] Freitas, P. P., Ferreira, R., Cardoso, S., Cardoso, F. (2007). Magnetoresistive sensors. IEEE Translation Journal on Magnetics in Japan, 19(16), 165221-165221.
  • [8] Popovic, R. S., Drljaca, P. M., Schott, C. (2002). Bridging the gap between AMR, GMR, and Hallmagnetic sensors. International Conference on Microelectronics.
  • [9] Chen, K.-L., Chen, N. (2011). A New Method for Power Current Measurement Using a Coreless Hall Effect Current Transformer. IEEE Transactions on Instrumentation and Measurement, 60(1), 158-169.
  • [10] Weiss, R., Makuch, R., Itzke, A., Weigel, R. (2017). Crosstalk in Circular Arrays of Magnetic Sensors for Current Measurement. IEEE Transactions on Industrial Electronics, 64(6), 4903-4909.
  • [11] Rienzo, L. D., Bazzocchi, R., Manara, A. (2001). Circular arrays of magnetic sensors for current measurement. IEEE Transactions on Instrumentation & Measurement, 50(5), 1093-1096.
  • [12] Li, X., You, J., Shu, X., Kang, R. (2009). Electric current measurement using AMR sensor array. International Conference on Mechatronics and Automation. Changchun
  • [13] Bernieri, A., Ferrigno, L., Laracca, M., Rasile, A. (2017). An AMR-based Three Phase Current Sensor for Smart Grid Applications. IEEE Sensors Journal, 17(23), 7704-7712.
  • [14] Chen, Y., Huang, Q., Khawaja, A. H. (2019). An Interference-Rejection Strategy for Measurement of Small Current Under Strong Interference With Magnetic Sensor Array. IEEE Sensors Journal, 19(2), 692-700.
  • [15] Bazzocchi, R., Rienzo, L. D. (1999). Interference rejection algorithm for current measurement using magnetic sensor arrays. Sensors & Actuators A Physical, 85(1), 38-41.
  • [16] Itzke, A., Weiss, R., Weigel, R. (2019). Influence of the Conductor Position on a Circular Array of Hall Sensors for Current Measurement. IEEE Transactions on Industrial Electronics, 66(1), 580-585.
  • [17] Zhu, K., Lee, W. K., Pong, P.W.T. (2017). Non-Contact Capacitive-Coupling-Based and Magnetic-Field-Sensing-Assisted Technique for Monitoring Voltage of Overhead Power Transmission Lines. IEEE Sensors Journal, 17(4), 1069-1083.
  • [18] Diniz, P.S.R. (2013). Adaptive Filtering: Algorithms and Practical Implementation. Bibtex Nuhag.
  • [19] Giri, A. K., Arya, S. R., Maurya, R., Babu, B. C. (2018). Power Quality Improvement in Stand-alone SEIG based Distributed Generation System using Lorentzian Norm Adaptive Filter. IEEE Transactionson Industry Applications, (99), 1-1.
  • [20] Zanni, L., Boudec, J.Y.L., Cherkaoui, R., Paolone, M. (2017). A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation. IEEE Transactions on Control Systems Technology, 25(5), 1683-1697.
  • [21] Enayati, J., Moravej, Z. (2017). Real-time harmonics estimation in power systems using a novel hybrid algorithm. IET Generation Transmission & Distribution, 11(14), 3532-3538.
  • [22] Zhao, J., Wang, Z., Wang, J. (2016). Robust Time-Varying Load Modeling for Conservation Voltage Reduction Assessment. IEEE Transactions on Smart Grid, (99), 1-1.
  • [23] Zhou, N., Pierre, J. W., Trudnowski, D. J., Guttromson, R. T. (2007). Robust RLS Methods for Online Estimation of Power System Electromechanical Modes. IEEE Transactions on Power Systems, 22(3), 1240-1249.
  • [24] Jing, W., Geng, Y. S., Wang, J. H., Song, Z. X. (2005). Electric Current Measurement Using Magnetic Sensor Array Based on Kalman Filtering. Automation of Electric Power Systems.
  • [25] So, H. C. (2001). LMS-based algorithm for unbiased FIR filtering with noisy measurements. Electronics Letters, 37(23), 1418-1420.
  • [26] Feitosa, A. E., Nascimento, V. H., Lopes, C. G. (2018). Adaptive Detection in Distributed Networks using Maximum Likelihood Detector. IEEE Signal Processing Letters, (99), 1-1.
  • [27] Ali, H. S. (2008). Kalman Filtering and RLS. Hoboken, NJ USA: Wiley-IEEE Press.
  • [28] Ali, H. S. (2008). RLS Algorithm. Hoboken, NJ USA: Wiley-IEEE Press.
  • [29] Ali, H. S. (2008). Performance of RLS and Other Filters. Hoboken, NJ USA: Wiley-IEEE Press.
  • [30] Haykin, S. S. (2009). Neural networks and learning machines. Beijing, China: China Machine Press.
  • [31] TMR 2104. (2019). http://www.dowaytech.com/en/1800.html
Uwagi
EN
This project is supported by Sichuan Youth Science and Technology Innovation Team Fundunder Grant 2017TD0009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31fdf516-8a47-4abd-9deb-8238f3f6c0d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.