Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present work, the performance assessment of despeckle filtering algorithms has been carried out for (α) noise reduction in breast ultrasound images and (b) segmentation of benign and malignant tumours from breast ultrasound images. The despeckle filtering algorithms are broadly classified into eight categories namely local statistics based filters, fuzzy filters, Fourier filters, multiscale filters, non-linear iterative filters, total variation filters, non-local mean filters and hybrid filters. Total 100 breast ultrasound images (40 benign and 60 malignant) are processed using 42 despeckle filtering algorithms. A despeckling filter is considered to be appropriate if it preserves edges and features/structures of the image. Edge preservation capability of a despeckling filter is measured by beta metric (β) and feature/structure preservation capability is quantified using image quality index (IQI). It is observed that out of 42 filters, six filters namely Lee Sigma, FI, FB, HFB, BayesShrink and DPAD yield more clinically acceptable images in terms of edge and feature/structure preservation. The qualitative assessment of these images has been done on the basis of grades provided by the experienced participating radiologist. The pre-processed images are then fed to a segmentation module for segmenting the benign or malignant tumours from ultrasound images. The performance assessment of segmentation algorithm has been done quantitatively using the Jaccard index. The results of both quantitative and qualitative assessment by the radiologist indicate that the DPAD despeckle filtering algorithm yields more clinically acceptable images and results in better segmentation of benign and malignant tumours from breast ultrasound images.
Wydawca
Czasopismo
Rocznik
Tom
Strony
100--121
Opis fizyczny
Bibliogr. 99 poz., rys., tab.
Twórcy
autor
- Thapar Institute of Engineering and Technology, Patiala, Punjab, India
autor
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
autor
- Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Bibliografia
- [1] Michailovich OV, Tannenbaum A. Despeckling of medical ultrasound images. IEEE Trans Ultrasonics Ferroelect Freq Contr 2006;53(1):64–78.
- [2] Narayanan SK, Wahidabanu RSD. A view of despeckling in ultrasound imaging. Int J Signal Process Image Process Pattern Recogn 2009;2(3):85–98.
- [3] Loizou CP, Pattichis CS. Despeckle filtering algorithms and software for ultrasound imaging. Synthesis lectures on algorithms and software for engineering. San Rafael, CA, USA: Claypool Publishers; 2008.
- [4] Burckhardt CB. Speckle in ultrasound B-mode scans. IEEE Trans Sonics Ultrasonics SU-25 1978;1:1–6.
- [5] Zhang J, Wang C, Chang Y. Comparison of despeckled filters for breast ultrasound images. Circuits Syst Signal Process 2015;34(1):185–208.
- [6] Gupta D Anand RS, Tyagi B. Despeckling of ultrasound medical images using ripplet domain and nonlinear filtering. Signal Image Video Process 2015;9(5):1093–111.
- [7] Finn S, Glavin M, Jones E. Echocardiographic speckle reduction comparison. IEEE Trans Ultrasonics Ferroelectr Freq Contr 2011;58(1):82–101.
- [8] Gupta D, Anand RS, Tyagi B. Despeckling of ultrasound images of bone fracture using M-band ridgelet transform. Optik 2014;125:1417–22.
- [9] Mateo JL, Fernandez-Caballero A. Finding out general tendencies in speckle noise reduction in ultrasound images. Exp Syst Appl 2009;36(4):7786–97.
- [10] Wong A, Mishra A, Bizheva K, Clausi DA. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Exp 2010;18(8):8338–52.
- [11] Elamvazuthi I, Muhd-Zin MLB, Begam KM. Despeckling of ultrasound images of bone fracture using multiple filtering, algorithms. Math Comput Modell 2013;57(1–2):152–68.
- [12] Kocer HE, Cevik KK, Sivri M, Koplay M. Measuring the effect of filters on segmentation of developmental dysplasia of the hip. Iranian J Radiol 2016;13(3):e25491.
- [13] Biradar N, Dewal ML, Rohit MK. A novel hybrid homomorphic fuzzy filter for speckle noise reduction. Biomed Eng Lett 2014;4(2):176–85.
- [14] Biradar N, Dewal ML, Rohit MK. Edge preserved speckle noise reduction using integrated fuzzy filters. Int Scholarly Res Notices 2014;2014:1–11.
- [15] Gupta D, Anand RS, Tyagi B. Ripplet domain non-linear filtering for speckle reduction in ultrasound medical images. Biomed Signal Process Contr 2014;10(1):79–91.
- [16] Loizou CP, Theofanous C, Pantziaris M, Kasparis T. Despeckle filtering software toolbox for ultrasound imaging of common carotid artery. Comput Methods Programs Biomed 2014;14(1):109–24.
- [17] Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M, Nicolaides A. Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrasonics Ferroelectr Freq Contr 2005;52 (10):1653–69.
- [18] Gupta D, Anand RS, Tyagi B. Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain. IET Image Process 2015;9 (2):107–17.
- [19] Biradar N, Dewal ML, Rohit MK. Speckle noise reduction in B-mode echocardiographic images: a comparison. IETE Techn Rev 2015. http://dx.doi.org/10.1080/02564602. 2015.1031714.
- [20] Manth N, Virmani J, Kumar V, Kalra N, Khandelwal N. Despeckle filtering: performance evaluation for malignant focal hepatic lesions. Proc. 2nd International Conference on Computing for Sustainable Global Development; 2015.
- [21] Subramanya MB, Kumar V, Mukherjee SD, Saini M. SVM-based CAC system for B-mode kidney ultrasound images. J Digital Imaging 2015;28:448–58.
- [22] Hiremath PS, Akkasaligar PT, Badiger S. Visual enhancement of digital ultrasound images using multiscale wavelet domain. Pattern Recogn Image Anal 2010;20(3):303–15.
- [23] Hiremath PS, Akkasaligar PT, Badiger S. Speckle reducing contourlet transform for medical ultrasound images. Int J Comput Electr Automation Contr Inf Eng 2011;5(8):932–9.
- [24] Biradar N, Dewal ML, Rohit MK. Blind source parameters for performance evaluation of despeckling filters. Int J Biomed Imaging 2016;2016:1–12.
- [25] Gong G, Zhang H, Yao M. Speckle noise reduction algorithm with total variation regularization in optical coherence tomography. Opt Exp 2015;23(19):24699–712.
- [26] Stankiewicz A, Marciniak T, Dabrowski A, Stopa M, Rakowicz P, Marciniak E. Denoisisng methods for improving automatic segmentation in OCT images of human eye. Bull Polish Acad Sci Techn Sci 2017;65(1):71–8.
- [27] http://ultrasoundcases.info/category.aspx?cat=67. Accessed December 2016.
- [28] Lee JS. Speckle analysis and smoothing synthetic aperture radar images. Comput Graphics Image Process 1981;17 (1):24–32.
- [29] Lee JS. Digital image smoothing and sigma filter. Comput Vision Graphics Image Process 1983;24(2):255–69.
- [30] Kuan DT, Sawchuk AA, Strand TC, Chavel P. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans Pattern Anal Mach Intell 1985;7(2):165–77.
- [31] Frost VS, Stiles JA, Shanmugan KS, Holtzman JC. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 1982;4(2):157–66.
- [32] Chaudhary KN, Sage D, Unser M. Fast O(1) bilateral filtering using trigonometric range kernels. IEEE Trans Image Process 2011;20(12):3376–82.
- [33] Kwan HK. Fuzzy filters for noise reduction in images. In: Nachtegael M, Van der Weken D, Kerre EE, Van De Ville D, editors. Fuzzy filters for image processing. Berlin: Springer- Verlag; 2003. p. 25–53.
- [34] Biradar N, Dewal ML, Rohit MK. Speckle noise reduction using hybrid TMAV based fuzzy filter. Int J Res Eng Technol 2014;3(3):113–8.
- [35] Chang SG, Yu B, Vettereli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 2000;9(9):1532–46.
- [36] Bao, Zhang L. Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Trans Med Imaging 2003;22(9):1089–99.
- [37] Zhou D, Cheng W. Image denoising with an optimal threshold and neighbouring window. Pattern Recogn Lett 2008;29(11):1694–7.
- [38] Zhou D, Shen X. Image denoising using block thresholding. Proc. 2008 Congress on Image and Signal Processing; 2008.
- [39] Luisier F, Blu T. A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans Image Process 2007;16(3):593–606.
- [40] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992;60(1):259–68.
- [41] Goldstein T, Osher S. The split Bregman method for L1- regularized problems. SIAM J Imaging Sci 2009;2(2):423–43.
- [42] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12(7):629–39.
- [43] Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Trans Image Process 2002;11(11):1260–70.
- [44] Aja-Fernández S, AlberolaLópez C. On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans Image Process 2006;15(9):2694–701.
- [45] Weickert J. Coherence-enhancing shock filters. In: Michaelis B, Krell G, editors. Pattern recognition. Heidelberg: Springer; 2003. p. 1–8.
- [46] Coupe P, Hellier P, Kervrann C, Barillot C. Nonlocal means- based speckle filtering for ultrasound images. IEEE Trans Image Process 2009;18(10):2221–9.
- [47] Deledalle CA, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 2009;18 (12):2661–72.
- [48] Ghosh S, Chaudhary KN. On fast bilateral filtering using Fourier kernels. IEEE Signal Process Lett 2016;23(5):570–3.
- [49] Sheet D, Pal S, Chakraborty A, Chatterjee A, Ray AK. Image quality assessment for performance evaluation of despeckle filters in optical coherence tomography of human skin. Proc. 2010 EMBS Conference on Biomedical Engineering and Sciences; 2010.
- [50] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;3(4):1–14.
- [51] Wang Z, Bovik AC. A universal image quality index. IEEE Signal Process Lett 2002;9(3):81–4.
- [52] Norouzi A, Mohd Rahim MS, Altameem A, Saba T, Rad AE, Rehman A, et al. Medical image segmentation methods, algorithms, and applications. IETE Techn Rev 2014;31 (3):199–213.
- [53] Horsch K, Giger ML, Venta LA, Vyborny CJ. Automatic segmentation of breast lesions on ultrasound. Med Phys 2001;28(8):1652–9.
- [54] Shan J, Cheng HD, Wang Y. A novel segmentation method for breast ultrasound images based on neutrosophic I-mean clustering. Med Phys 2012;39(9):5669–82.
- [55] Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J. Probability density difference-based active contour for ultrasound image segmentation. Pattern Recogn 2010;43(6):2028–42.
- [56] Gao L, Liu X, Chen W. Phase and GFV-based level set segmentation of ultrasonic breast tumors. J Appl Math 2012;2012:1–22.
- [57] Xiang Y, Chung ACS, Ye J. An active contour model for image segmentation based on elastic interaction. J Comput Phys 2006;219:455–76.
- [58] Mahesan KV, Bhargavi S, Jayadevappa D. Segmentation of MR images using active contours: methods, challenges and applications. Int J Innovative Res Adv Eng 2017;2(4):13–21.
- [59] Lotfollahi M, Gity M, Ye JY, Mahlooji Far A. Segmentation of breast ultrasound images based on active contours using neutrosophic theory. J Med Ultrasonics 2017. http://dx.doi.org/10.1007/s10396-017-0811-8.
- [60] Lu R, Shen Y. Automatic ultrasound image segmentation by active contour model based on texture. Proc. of the 1st International Conference on Innovative Computing Information and Control; 2006.
- [61] Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 2011;20(7):2007–16.
- [62] Sachdeva J, Kumar v, Gupta I, Khandelwal N, Ahuja CM. A novel content-based active contour model for brain tumor segmentation. Med Resonance Imaging 2012;30(5):694–715.
- [63] Qian X, Wang J, Guo S, Li Q. An active contour model for medical image segmentation with application to brain CT image. Med Phys 2013;40(2). 021911-1–021911-10.
- [64] Yazdanpanah A, Hamarnesh G, Smith BR, Sarunic MV. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans Med Imaging 2011;30(2):484–96.
- [65] Shah S, Abaza A, Ross A, Ammar H. automatic tooth segmentation using active contour without edges. 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium; 2006.
- [66] Middleton I, Damper RI. Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Med Eng Phys 2004;26(1):71–86.
- [67] Chalana V, Linker DT, Haynor DR, Kim Y. A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans Med Imaging 1996;15(3):290–8.
- [68] Abdoli M, Dierckx RAJO, Zaidi H. Contourlet-based active contour model for PET image segmentation. Med Phys 2013;40 (8). http://dx.doi.org/10.1118/1.4816296.
- [69] Derraz F, Beladgham M, Khelif M. Application of active contour models in medical image segmentation. Proc. 2004 International Conference on Information Technology: Coding and Computing; 2004.
- [70] Atkins MS, Mackiewich BT. Fully automatic segmentation of the brain in MRI. IEEE Trans Med Imaging 1998;17(1):98-107.
- [71] Klemencic A, Kovacic S, Pernus F. Automated segmentation of muscle fiber images using active contour models. Cytometery 1998;32(4):317–26.
- [72] Davayzikos CA, Prince JL. An active contour model for mapping the cortex. IEEE Trans Med Imaging 1995;14(1):65–80.
- [73] Wang L, Li C, sun Q, Xia D, Kao CY. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comp Med Imaging Graphics 2009;33(7):520–31.
- [74] Al-Diri B, Hunter A, Steel D. An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 2000;28(9):1488–97.
- [75] Casselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comp Vision 1997;22(1):61–79.
- [76] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10(2):266–77.
- [77] Image Processing and Analysis in JAVA, Image J 1.49 version 1.6.024 http://imagej.nih.gov/ij/download/win32/ij149-jre6-64.zip.
- [78] Bhateja V, Misra M, Urooj S, Lay-Ekuakille A. Bilateral despeckling filter in homogeneity domain for breast ultrasound images. Proc. International Conference on Advances in Computing, Communications and Informatics; 2014.
- [79] Khusna DA, Nugroho HA, Seosanti A. Performance analysis of edge and detailed preserved speckle noise reduction filters for breast ultrasound images. Proc. 2nd International Conference on Information Technology, Computer and Electrical Engineering; 2015.
- [80] Singh BK, Verma K, Thoke AS. Objective and optical evaluation of despeckle filters in breast ultrasound images. IETE Techn Rev 2015. http://dx.doi.org/10.1080/02564602.2015.1019943.
- [81] Zhang J, Lin G, Wu L, Cheng Y. Speckle filtering of medical ultrasonic images using wavelet and guided filter. Ultrasonics 2015;65:177–93.
- [82] Elawady M, Sadek I, Shabayek AR, Pons G, Ganau S. Automatic nonlinear filtering and segmentation of breast ultrasound images. In: Campilho A, Karray F, editors. Image analysis and recognition. Switzerland: Springer; 2016. p. 206–13.
- [83] Lal M, Kaur L, Gupta S. Speckle reduction with edge preservation in B-scan breast ultrasound images. Int J Image Graphics Signal Process 2016;9:60–8.
- [84] Nugroho HA, Triyani Y, Rahmawaty M, Ardiyanto I, Choridah L. Performance analysis of filtering techniques for speckle reduction on breast ultrasound images. Proc. International electronics symposium; 2016.
- [85] Prabhakar T, Poonguzhali S. Denoising and automatic detection of breast tumor in ultrasound images. Asian J Inform Technol 2016;15(18):3506–12.
- [86] Singh BK, Verma K, Thoke S. Investigations on edge preservation and smoothening of frequency domain filters for speckle removal in breast ultrasound images. Int J Biomed Eng Technol 2016;20(2):97–115.
- [87] Cristerna AR, Guerrero-Cedillo CP, Donati-Olvera GA, Gomez-Flores W, Pereira WCA. Study of the impact of image processing approaches on segmentation and classification of breast lesions on ultrasound. Proc. 14th International Conference on Electrical Engineering, Computer Science and Automatic Control; 2017.
- [88] Feng X, Guo X, Huang Q. Systematic evaluation on speckle suppression methods in examination of ultrasound breast images. Appl Sci 2017;7(37):1–23.
- [89] Prabhakar T, Poonguzhali S. Analysis of level set methods for lesion segmentation of breast ultrasound images. Int J Pure Appl Math 2017;114(10):119–32.
- [90] Shiji TP, Remya S, Vinu T. Computer aided segmentation of breast ultrasound images using scale invariant feature transform (SIFT) and bag of features. Proc. 7th International Conference on Advances in Computing and Communications; 2017.
- [91] Prabusankarlal KM, Manavalan R, Sivaranjani R. An optimized non local means filter using automated clustering based preclassification through gap statistics for speckle reduction in breast ultrasound images. Appl Comput Informatics 2017;14(1):48–54.
- [92] Lal M, Kaur L, Gupta S. Automatic segmentation of tumors in B-mode ultrasound images using information gain based neutrosophic clustering. J X-ray Sci Technol 2018;26(2):209–25.
- [93] Osman FM, Yap MH. The effect of filtering algorithms for breast ultrasound lesions segmentation. Informatics Med Unlocked 2018;12:14–20.
- [94] Jabarulla MY, Lee HN. Speckle reduction in ultrasound liver images based on a sparse representation over a learned dictionary. Appl Sci 2018;8(6):903–19.
- [95] Panigrahi L, Verma K, Singh BK. Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Exp Syst Appl 2018. https://doi.org/10.1016/j.eswa.2018.08.013.
- [96] Lestari DP, Madenda S, Ernastuti, Wibowo EP. Comparison of three segmentation methods for breast ultrasound images based on level set and morphological operations. Int J Electr Comput Eng 2017;7(1):383–91.
- [97] Triyani Y, Nugroho HA, Rahmawaty M, Ardiyanto I, Choridah L. Performance analysis of image segmentation for breast ultrasound images. Proc. 8th International Conference on Information Technology and Electrical Engineering; 2016.
- [98] Strauss S, Gavin E, Gottlieb P, Katsnelson L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Abdominal Imaging 2007;189(6): W320–3.
- [99] Cenzig M, Senturk S, Cetin B, Bayrak AH, Bilek SU. Sonographic assessment of fatty liver: intraobserver and interobserver variability. Int J Clin Exp Med 2014;7(12):5453–60.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31f8c04e-0e9e-47be-9374-acc69d2fb08f