PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geotechnical Zoning Map for an Industrial Area in the Castelo Branco Region (Portugal)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mapa stref geotechnicznych dla obszaru przemysłowego w regionie Castelo Branco (Portugalia)
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
EN
Abstrakty
EN
Large-scale geotechnical zoning maps (  1/10 000) applied to Regional and Urban Planning (RUP), and also to the expansion of cities into new areas, such as new industrial areas, generally follow the classic methodology, which corresponds to the presentation of Geotechnical Units Map (GUM) in association with extensive tables with the characteristics of the various Geotechnical Units (GUs). The GUs are defined based on the different lithological and/or lithogenetic types. The tables associated with the GUMs present the characteristics of the various UGs, namely identification properties, in-situ physical parameters, strength parameters, and deformability parameters. In addition to these parameters, it is common to find geological, geomorphological, geodynamic, and hydrogeological elements, with the development of certain specificities depending on each region. In the present case study, in addition to the GUM, in association with some tables with a vast set of parameters, a Geotechnical Zoning Map (GZM) is presented, which is the result of a final document based on a methodology that the authors understand that it should always be used and standardized for this type of situation, i.e. the final map should be the result of overlaying three partial maps, according to the following: 1st Level – Topographic Map, with perfect reading not only of what is common in this type of map but also an adequate reading of the urban fabric, road network, and others.; 2nd Level - Classic GUM; this level must be presented in classic symbology for the different lithologies, so that, when overlapping the previous level, it is possible to read both levels; 3rd Level – GZM, which corresponds to a colour map, with relatively transparent colours, so that when overlaying the previous levels, it is always possible to collect information from the three levels; this last level will have several colours, the main ones being red, green and yellow, which correspond respectively to Very Poor, Excellent and Intermediate Suitability, concerning Suitability for Urban/Industrial Occupation; other intermediate colours may be used, depending on the classification of each area under study. Note that each colour corresponds to a Geotechnical Zone (GZ), representing the suitability for urban-industrial occupation of an area of the territory, as defined in the legend of this map. Therefore, the main objective of this paper is to present a case study with the above situations, but with the advance of applying a methodology that can be implemented with Geographic Information Systems (GIS) to obtain colour zoning, which will be a consequence of overlaying 3 new maps: i) Bearing capacity map for foundations; ii) Settlement susceptibility map, and iii) Slope stability map. Each of these analytical maps is the result of massive calculations using the parameters of each GU for the different places of the territory under study. It should be noted, for example, that different GUs, one made up of clays and the other of sands, which are completely different, can fall under the same GZ. The important point is to define a zoning in which the territory of each zone has the same reaction to any similar action, following what is commonly used for the dimensioning and implementation of urban buildings and/or other similar ones: bearing capacity, settlements, and stability of the natural slope. Finally, the GZM of the area under study is presented, with some conclusions.
Rocznik
Strony
art. no. 36
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • GeoBioTec, Beira Interior University, 6201-001 Covilhã, Portugal
autor
  • GeoBioTec, Beira Interior University, 6201-001 Covilhã, Portugal
  • GeoBioTec, Beira Interior University, 6201-001 Covilhã, Portugal
  • GeoBioTec, Beira Interior University, 6201-001 Covilhã, Portugal
  • GeoBioTec, Beira Interior University, 6201-001 Covilhã, Portugal
  • GeoBioTec, Beira Interior University, 6201-001 Covilhã, Portugal
Bibliografia
  • 1. L.M. Ferreira Gomes, “Zonamento geotécnico da área urbana e suburbana de Aveiro”, Ph.D. thesis, Aveiro University, Aveiro; Vol.1, 531 p.; Vol.2, 8 mapas, 1992.
  • 2. UNESCO/IAEG, Guide pour la préparation des cartes géotechniques, Les Presses de l’Unesco, 1976, 79p.
  • 3. IAEG, “Classification of the rocks and soils for engineering geological mapping”, Bull. IAEG, nº19, 1979, pp.364-371.
  • 4. IAEG, “Recommended symbols for engineering geological mapping”, Bull. IAEG, nº24, 1981, pp.227-234.
  • 5. IAEG, “Rock and Soil description and classification for engineering geological mapping”, Bull. IAEG, nº24, 1981, pp.235-274.
  • 6. W.R. Dearman, Engineering geological mapping, Butterworth-Heinemann Ltd. Oxford, 1991, 387p.
  • 7. Moufida El May, Mahmoud Dlala, Ismail Chenini, “Urban geological mapping: Geotechnical data analysis for rational development planning”, Eng.Geology 116 (2010) 129-138. DOI: 10.1016/j.enggeo.2010.08.002
  • 8. A. Zhussupbekov, N. Alibekova, S. Akhazhanov, A. Sarsembayeva, “Development of a Unified Geotechnical Database and Data Processing on the Example of Nur-Sultan City”, Appl. Sci., MDPI, 2021, 11, 306. https://doi.org/10.3390/app11010306
  • 9. A.D. Mamdooh, K. R. Aljanabi, K.N. Sayl, “GIS-based approach for geotechnical mapping: A review”, AIP Conf. Proc. 2775, 050004 (2023), https://doi.org/10.1063/5.0141122
  • 10. L.M. Ferreira Gomes, P. Gabriel de Almeida, V.M. Cavaleiro, “Geotechnical mapping in planning urban areas metodological standard proposal”, Proc. of Int. Symposium. "Engineering geological problems of urban areas". "EngGeolCity-2001". Russia. 4p.
  • 11. W.R. Dearman, N. Eyles, “An engineering geological map of the soils and rocks of United Kingdom”, Bull. IAEG, nº25, 1982, pp.3-18.
  • 12. SCE, Serviços Cartográficos do Exército. Carta Militar de Portugal. Escala 1/25000. Folhas: 280 e 292, 1999.
  • 13. D. Palmer, The generalized reciprocal method seismic refraction interpretation, Society of Exploration Geophysicists, Tulsa, 1980, 104p.
  • 14. ISSMFE, “Dynamic probing (DP): International reference test procedure.” ISSMFE Technical Committee on Penetration Testing, DP Working Party, (eds) Balkema Rotterdam, 1988, pp.53-70.
  • 15. ISSMFE, “Standard penetration test (SPT): International Reference Procedure.” Proc. 1st European Conference on Penetration Testing (ESOPT 1), V. 1, 1989, pp.3-26.
  • 16. F.L. Ladeira, “Windsor Test – a new measuring rock or soil strength”, CARE 88 (Conf. on applied rock engineering). The Institution of Mining and Metallurgy. London, 1988, pp. 127-131.
  • 17. A. Aydin, A. Basu, “The Schmidt hammer in rock material characterization”, Engineering Geology, Vol. 81, 1, 2005, pp. 1-14, https://doi.org/10.1016/j.enggeo.2005.06.006
  • 18. ASTM International, “ASTM Standard D420, Guide for Site Characterization for Engineering Design and Construction Purposes”, 2018.
  • 19. ASTM, "ASTM D6913/D6913M-17 Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis," ASTM International, West Conshohocken, PA - USA, 2021.
  • 20. ISO, "ISO 17892-12 Geotechnical investigation and testing - Laboratory testing of soil - Part 12: Determination of liquid and plastic limits", 2018.
  • 21. ASTM, "ASTM D698-12 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)", ASTM International, West Conshohocken, PA, USA, 2012.
  • 22. ASTM, "ASTM D3080-04," Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, West Coshohocken, PA, USA, 2012.
  • 23. ISO, "ISO17892-5 Geotechnical investigation and testing - Laboratory testing of soil - Part 5: Incremental loading oedometer test," 2017.
  • 24. J. Soares, L. Rodrigues, L. Viegas, L. Lima, E. Fonseca, "Cartografia de imagens geoquímicas por filtragem linear: Aplicação à Área de Fundão - Penamacor". Com. Serv. Geol. Portugal; t.71, fasc.2, 1985, pp.223-230.
  • 25. SPG, Serviços Geológicos de Portugal, “Carta geológica de Portugal”, Esc. 1/500 000. Serviços Geológicos de Portugal, Lisboa, 1992.
  • 26. ISRM, “Rock Characterization Suggested Method, Testing and Monitoring,” Int. Society for Rock Mechanics, Brown W.T. (Ed), London, 1981.
  • 27. ASTM, “Classification of soils for engineering purposes”. Standards Annual Book D2487-85. ASTM, Philadelphia.Vol. 04.08, 1989, pp. 288-297.
  • 28. ASTM, “Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes”. Standards Annual Book D3282-15. ASTM, Philadelphia.Vol. 04.08, 2015, 6p.
  • 29. J.E. Bowles, Foundation Analysis and Design. McGraw Hill Companies, Inc., 5th Ed. N. York. 1997, 1207p.
  • 30. G.G. Meyerhof, “Penetration testing outside Europe”. General Report, Proc., European Symp. on Penetration Testing, Vol.2.1. Stockholm, 1974.
  • 31. J.H. Schmertmann, “Static cone to compute static settlement over sand”, Jour. Soil Mech. Found. Div., ASCE, New York, Vol. 96, nº SM3, 1970, pp.1011-1043.
  • 32. UBI, “Carta Geotécnica da Zona do Alagão, Castelo Branco”, C.M. Castelo Branco, (2008), 50p. 3 Anexos: ILocalização de Ensaios e Amostragem, II - Resultados de Ensaios Geotécnicos, III - Anexo destacável: i) Mapa de Zonamento Geotécnico – Escala 1/2500, ii) Quadro Síntese das Características das Unidades Geotécnicas.
  • 33. L.M. Ferreira Gomes, E. Mendes, L.J. Andrade Pais, P. M. Carvalho, “Carta de zonamento geotécnico para implantação de uma área industrial na região de Castelo Branco”, XVI Enc. Nac. do Colégio de Engenharia Geológica e de Minas da Ordem dos Engenheiros. Régua. 5 - 8 dezembro, 2008, 16p.
  • 34. L.M. Ferreira Gomes, E. Mendes, L.J. Andrade Pais, P.M. Carvalho, “Estudos conducentes a uma carta de zonamento geotécnico numa área de maciços graníticos”, 12º CNG. Cong. Nac. de Geotecnia, Guimarães, 2010, pp. 229-238.
  • 35. B.M. Das, Advanced Soil Mechanics. Mc.Graw Hill Book Company, New York, 1985, 511p.
  • 36. L.W. Abramsan, T.S. Lee, S. Sharma, G.M. Boyce, Slope Stability and Stabilization Methods. Second Edition, John Wiley & Sons. Inc., New York, 2001, 736p.
  • 37. E. Hoek, J. Bray, Rock slope engineering. London Inst. Of Mining and metallurgy, London, 1974, 309 p.
  • 38. D.C. Wyllie, C.W. Mah, Rock Slope Engineering, Civil and mining. Spon Press, Taylor & Francis Group. 4th edition, London, 2004, 431p.
Uwagi
W publikacji dwóch autorów o takim samym numerze ORCID ; Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31f281c2-4598-4de2-bad5-5c5a877e81db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.