PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High energy materials (HEMs) – innovations with regard to the environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Materiały wysokoenergetyczne (MW) – Innowacje w aspektach środowiska przyrodniczego
Języki publikacji
EN
Abstrakty
EN
The study presents the direction of research being undertaken into high-energy materials in respect of environmental sustainability and the increasing requirements of national and international legislation.
PL
W pracy przedstawiono kierunki badań nad materiałami wysokoenergetycznymi (MW) w świetle zasad zrównoważonego środowiska przyrodniczego i konieczności spełnienia rosnących wymagań określonych przez krajowe i międzynarodowe akty legislacyjne.
Rocznik
Tom
Strony
75--89
Opis fizyczny
Bibliogr. 133 poz.
Twórcy
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals in Gliwice, 5 Sowińskiego Street, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
  • Adam Mickiewicz University, Faculty of Chemistry, 89b Umultowska Street, 61-614 Poznań, Poland
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry, 2 gen. S. Kaliskiego Street, 01-476 Warsaw, Poland
Bibliografia
  • [1] Anastas T.P., Warner C.J. Green Chemistry, Theory and Practice. New York: Oxford University Press, 1998.
  • [2] Agrawal P.J. High Energy Materials: Propellants, Explosives and Pyrotechnics. Weinheim: Willey-VCH, 2010.
  • [3] Maranda A. Industrial Explosives. (in Polish) Warsaw: Wyd. Wojskowa Akademia Techniczna 2010;ISBN 978-83-61486-61-9.
  • [4] Lipińska K., Lipiński M., Maranda A. Disposal of Waste High Energy Materials. [in:] Waste and Packaging – New Legal Regulations and Obligations. (in Polish) Wachowski L. Ed., Poznań: Wyd. Forum, 2009.
  • [5] Olah G.A., Squire D.R. Chemistry of Energetic Materials. New York: Academic Press. Inc., 1991.
  • [6] Nienartowicz M. Progress of the Disposal Program for Decommissioned Warfare Agents in the National Defense Department. (in Polish) Problemy Techniki Uzbrojenia 2006, 98: 25-30.
  • [7] Polyakov L. Aging Stocks of Ammunition and SALW in Ukraine: Risks and Challenges. Bonn International Center for Conversion, Bonn, 2005, Paper 41.
  • [8] Boulay R., Kotobelli A. The Demilitarization of Small Arms and Light Weapons Ammunition in Albania – A NATO PFP Trust Fund Project, NAMSA, 2006.
  • [9] Sałaciński T. Sources of Data on Accidents and near-to-Accident Events Connected with Explosives. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2014, 6: 64-71.
  • [10] Urbański T. Chemistry of Technology of Explosives. Vol. 4, Oxford: Pergamon Press, 1984.
  • [11] Klapotke M.T. Chemistry of High-Energy Materials. Berlin: Walter de Gruyter, 2012.
  • [12] Sikder A.K., Sikder N.A. A Review of Advanced High Performance, Intensitive and Thermal Stable Energetic Materials Emerging for Military and Space Applications. J. Hazard. Mater., A 2004, 112: 1-15.
  • [13] Wu J.-T., Zhang J.-G., Zhang T.-L., Yang L. Energetic Nitrogen-rich Salt. Cent. Eur. J. Energ. Mater. 2015, 12(3): 417-437.
  • [14] Szala M., Lewczuk R. New Synthetic Methods for 4,4’,5,5’-Tetranitro-2,2’-bi-1H-imidazole (TNBI). Cent. Eur. J. Energ. Mater. 2015, 12(2): 261-270.
  • [15] Sabate Miro C., Delalu H. 2-Tetrazene Derivatives as New Energetic Materials; Synthesis, Characterization and Energetic Properties. Cent. Eur. J. Energ. Mater. 2014, 11(4): 515-537.
  • [16] Bayat Y., Zarandi M., Khadiv-Parsi P., Salimi Beni A. Statistical Optimization of the Preparation HNIW Nanoparticles via Oil-in-Water Microemulsions. Cent. Eur. J. Energ. Mater. 2015, 12(3): 459-472.
  • [17] Gołofit T., Maksimowski P., Kotlewski A. Safety of Ammonium Dinitramide. Synthesis vs. Size of a Commercial Production Scale. Cent. Eur. J. Energ. Mater. 2015, 12(4): 817-830.
  • [18] Pang. S.P., Yu Y.Z., Zhao X.Q. A Novel Synthetic Route to Hexanitroheksaisowurtzitane. Propellants Explos. Pyrotech. 2005, 30(6): 442-444.
  • [19] Lempert D., Nechiporenko G., Manelis G. Influence of Heat Release Value and Gaseous Combustion Products Content on Energetic Parameters of Solid Composite Propellants. Theory Pract. Energ. Mater. 2009, 8: 234-243.
  • [20] Dey A., Sikder A.K., Talawar B.M., Chottopadhyay S. Towards New Directions in Oxidizers/Energetic Fillers for Composite Propellants: an Overview. Cent. Eur. J. Energ. Mater. 2015, 12(2): 377-399.
  • [21] Manelis G.B., Nazin G.M., Rubtsov Y.I., Strunin V.A. Thermal Decomposition and Combustion of Explosives and Propellants. New York: Taylor & Francis Inc., 2003.
  • [22] Trzciński W.A., Cudziło S., Paszula J. Studies of Free Field and Confined Explosions of Aluminium Enriched RDX Compositions. Propellants Explos. Pyrotech. 2007, 32(6): 502-508.
  • [23] Trzciński W.A., Cudziło S., Paszula J. Study of the Effect of Additive Particle Size on Non-ideal Explosive Performance. Propellants Explos. Pyrotech. 2008, 33(3): 227-235.
  • [24] Srinivasan P., Kumaradhas P. Crystal Density Prediction, Charge Density Distribution and the Explosive Properties of Highly Energetic Molecule 2-Methyl-5-nitramino-tetrazole: and DFT and AIM Study. Cent. Eur. J. Energ. Mater. 2013, 10(1): 53-68.
  • [25] Cubero E., Orozco A.I., Luque F.J. Theoretical Study of Azidotetrazole Isomerism; Effect of Solvent and Substituents and Mechanism of Isomerization. J. Am. Chem. Soc. 1998, 120: 4723-4731.
  • [26] Liu R., Zou Z., Qi S., Yang L., Wu B., Huang H., Zhang T. Synthesis, Crystal Structure, and Properties of a Novel, Highly Sensitive Energetic, Coordination Compound: Iron(II) Carbohydrazide Perchlorate. Cent. Eur. J. Energ. Mater. 2013, 10(1): 17-36.
  • [27] Śliwa W. Selected Chemistry Fields for the Students of the Faculty of Mining. (in Polish) Wrocław: Wyd. Politechniki Wrocławskiej, 1977, pp. 235-246.
  • [28] Wojewódka A. Toxicity of Dinitrotoluene and Trinitrotoluene. (in Polish) Research Studies of the Central Mining Institute, Conference Series – Materials from the Blasting Works Safety Conference in Mining Industry 1999, 28: 239-245.
  • [29] Lewis T.A., Newcombe D.A., Crawford R.L. Bioremediation of Soils Contaminated with Explosives. J. Environ. Manage. 2004, 70(4): 291-307.
  • [30] Kuczyńska B., Maranda A. Toxicity of Selected Explosives on Living Organisms. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2011, 3: 90-99.
  • [31] Maranda A., Gołąbek B., Kasperski J. Emulsion Explosives. (in Polish) Warsaw: WNT, 2008; ISBN 978-83-204-3427-9.
  • [32] Maranda A., Kuczyńska B. Environmental Management of Explosives. [in:] High-Energy Materials. Maranda A., Sałaciński T., Lewandowska A. Eds., Vol. 2., Warsaw: Institute of Industrial Organic Chemistry, 2010.
  • [33] Velsko C.A., Watkins B.E., Pruneda C.O., Stephens J.R., Lipkin J. Emissions Characterization in the Contained Underground Demilitarization Laboratory at the Nevada Test Site. UCRL-JC-126887, LLNL USA, 1999.
  • [34] Explosion inside an Underground Storage of Explosives 2 November 1992. „Steingletscher”, Swiss Alps Switzerland. French Ministry for Sustainable Development – DGPR/SRT/BARPI, ARIA No 37776.
  • [35] Figurski J. IT System for Warfare Agent Recycling and Disposal Process Management. Problemy Techniki Uzbrojenia 2006, 98: 31-42.
  • [36] Bayat Y., Hajighasemali F. Synthesis of CL-20 by a Greener Method Using Nitroguanidine/HNO3. Propellants Explos. Pyrotech. 2016, 41(1): 20-23.
  • [37] Badgujar M.D., Talawar B.M., Mahulikar P.P. Review on Greener and Safer Synthesis of Nitro Compounds. Propellants Explos. Pyrotech. 2016, 41(1): 24-34.
  • [38] Szala M., Sałaciński T. 2,4,6-Trinitrotoluene as a Source of Modern Explosives. Review. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2015, 7: 125-143.
  • [39] Florczak B. Solid Rocket Propellants – Current State and Future Perspectives. (in Polish) [in:] Explosives. Research – Applications – Safety. Maranda A., Sałaciński T., Waszkiewicz I. Eds., Vol. I. Warsaw: Institute of Industrial Organic Chemistry, 2006.
  • [40] Leciejewski K.Z., Cudziło S. Trends in Development of Propellants in Aspects of Requirements of Future Gun Propellant System. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2011, 3: 64-71.
  • [41] Evaluation of Waste Management System. Part 2. Practical Applications. Kraszewski A., Pietrzyk-Sokulska E. Eds., Kraków: Wyd. IGSMiE PAN, 2011.
  • [42] Politzer P., Murray S.J. The Role of Products Composition in Determining Detonation Velocity and Detonation Overpressure. Cent. Eur. J. Energ. Mater. 2014, 11(4): 459-474.
  • [43] Clark P.R., Grens B.W., Machacek O., Eck R.G. Beneficial Use of Energy-Containing Waste. Patent US 5612507, 1997.
  • [44] Wieciński W. Disposal in View of Changes in Management of Decommissioned Ammunition Stores. Problemy Techniki Uzbrojenia 2010, 115: 85-90.
  • [45] Rez J., Kouba M.. Utilization of Demilitarized Energy Materials (DEM) as One of the Raw Materials for Production of Industrial Explosives. Proc. Conf. Blasting Techniques 2008, Stara Lesna, Slovakia, 2008.
  • [46] Lipińska K., Lipiński M., Maranda A., Sobala J., Badura E. Analysis of Possible Applications of Decommissioned Composite Solid Rocket Propellants in Mining Blasting Materials. (in Polish) Research Studies of the Central Mining Institute, Conference Series – Materials from the Blasting Works Safety Conference in Mining Industry 2002, 43: 185-189.
  • [47] Lipińska K., Lipiński M., Maranda A. Demilitarized Double Base Propellants as Ingredients of Commercial Explosives. Cent. Eur. J. Energ. Mat. 2005, 2(1): 69-78.
  • [48] Wendong W., Jianhong L., Zhibin Z. Study and Application of Emulsion Explosive and Water Gel Explosives Containing Waste Propellant. Explos. Mater. 2003, 5(32): 13-16.
  • [49] Cao Z., Kovenklioglu S., Kalyon D.M., Yazici R. Dissolution Study of BAMO/AMMO Thermoplastic Elastomers for the Recycling and Recovery of Energetic Materials. J. Energ. Mater. 1997, 15: 73-107.
  • [50] Spencer F.A., Hartline F.D. Recovery of Secondary Explosives from Explosive Compositions. Patent US 5977354, 1999.
  • [51] Phillips S.R., Cain W.A., Schilling T.J., Miks M. Recovering Nitramines and Reformulation of Byproducts. Patent US 6653506, 2003.
  • [52] Cannizzo L., Huntsmann L. Extraction and Recovery of Nitramines from Propellants, Explosives, and Pyrotechnics. Patent US 6414143, 2002.
  • [53] Warner F.K., Cannizzo F.L., Hajik M.R. Method for Recovery of Nitramines from Aluminized Energetic Materials. Patent US 6610156, 2003.
  • [54] Melvin S.W., Graham F.J. Method to Demilitarize Extract, and Recover Ammonium Perchlorate from Composite Propellants Using Liquid Ammonia. Patent US 4854982, 1989.
  • [55] Borkowski A.J., Borkowski J.P., Bielecki M., Maranda A., Borkowski J., Danielewicz D., Warchoł R. Laboratory and Firing Ground Examinations of TNT Hydrojetting Washing out from Artillery Shells. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2011, 3: 40-56.
  • [56] Lee E.K. Reformulation of Composition C-4 Explosive. Patent US 6887324, 2005.
  • [57] Mcnicol A.M. Broken-emulsion and Process for Recycling Emulsion Explosives. Patent US 5700970, 1997.
  • [58] Sapija D., Śliwiński J., Wojciechowski A., Ludas M., Madej W., Czubaty Ł., Krysiak P., Strzałkowski D. Using the Decommissioned Antipersonnel Mines in Development of Land Mine Alternatives. (in Polish) Problems of Mechatronics: Armament, Aviation, Safety Engineering 2014, 5(1): 81-90.
  • [59] Chyłek Z., Szala M. The Review of Potential High-energetic Components for Modern Plastic Bonded Explosives. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2015, 7: 144-155.
  • [60] Wachowski L., Domka F. Green Chemistry in the Sustainable Development of the Environment. [in:] Waste and Packaging – New Legal Regulations and Obligations. (in Polish) Kubera H. Ed., Poznań:Wyd. Forum, 2007, Ch. 2/1.1., pp. 1-29.
  • [61] Wachowski L., Kirszensztejn P. DDT and Its Derivatives. [in:] Waste and packaging – New Legal Regulations and Obligations. (in Polish) Urbaniak Wł. Ed., Poznań: Forum, 2003, Ch. 3/3.10, pp. 1-23.
  • [62] O’Neill P. Environmental Chemistry. (in Polish) 1st ed., Warsaw/Wrocław: PWN, 1997.
  • [63] vanLoon W.G., Duffy J.S. Environmental Chemistry. (in Polish) Warsaw: PWN, 2007.
  • [64] Enzyme Engineering for Fuels and Chemicals. Project realised by the Arnold F.H. research group CaliTech, USA.
  • [65] Talwar B.M., Sivabalan R., Mukundan T., Muthurajan H., Sikder K.A., Gandhe R.B., Subhananda Rao A. Environmentally Compatible Next Generation Green Energetic Materials (GEMs). J. Hazard Mater. 2009, 161: 589-607.
  • [66] Foltynowicz Z., Wachowski L. Commodity Science and Ecological Aspects of Marketing CFC and HCFC Alternatives. (in Polish) Poznań: Wyd. Uniwersytetu Ekonomicznego w Poznaniu, 2009.
  • [67] Kaim A. Computer Simulation of Technological Processes using CHMCAD. (in Polish) Practical classes materials from the Learning Laboratory of the Chemistry Technology at the Warsaw University Faculty of Chemistry.
  • [68] Spahlinger G. Recent Advances in High Nitrogen Energetic Materials. http://findpdf.top/advances/recent-advances-in-high-nitrogen-energetic-materials.html [retrieved 12.12.2016].
  • [69] Ferreira C., Ribeiro J., Freire F. Life-Cycle Assessment Applied to Military Systems: Overview of the Work Developed in the ERM Project. Greener and Safer Energetic and Ballistic Systems Conf., Bucharest, 2015.
  • [70] Amirhossein M., Arunprakash T.K. Environmental Life Cycle Assessment of New Energetic Materials. 12th AIChE Annual Meeting, Pittsburgh, USA, 2012, 174e.
  • [71] Amirhossein M., Arunprakash T.K. Energetic Ionic Materials: How Green are They? A Comparative Life Cycle Assessment Study. ACS Sustainable Chem. Eng. 2013, 1(4): 448-455.
  • [72] Kuczyńska B., Maranda A. Life Cycle Inventory of Production Processes Selected Mining Explosives. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2011, 3: 122-135.
  • [73] a) Red, white and plasticized phosphorus. (Vol. 2); b) Cichowicz J.J., HC Smoke (Vol. 4), [both in:] Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants. Report ARCSL-EA-83004, 1983.
  • [74] Alverbro K., Björklund A., Finnveden G., Hochschorner E., Hägvall J. A Life Cycle Assessment of Destruction of Ammunition. J. Hazard. Mater. 2009, 170(2-3): 1101-1109.
  • [75] Figurski J., Fonrobert P., Mazur I., Ignaciuk A. Ammunition Lifecycle. (in Polish) Problemy Techniki Uzbrojenia 2013, 128: 87-97.
  • [76] Hoffman D.M., Hawkins T.W., Lindsay, G.A., Wardle R.B., Manserd G.D. Clean, Agile Alternative Binders, Additives and Plasticizers for Propellant and Explosive Formulations. Conf. Life Cycles of Energetic Materials, Del Mar, CA, 1994.
  • [77] Figurski J, Kostrow R., Milewski E. Determining Costs in the Lifecycle of Armament Systems and Military Equipment. (in Polish) Problemy Techniki Uzbrojenia 2008, 108: 29-40.
  • [78] Milewski E., Figurski J. Economic Indemnity of the Lifecycle of Armament Systems and Military Equipment. (in Polish) Problemy Techniki Uzbrojenia 2010, 115: 91-97.
  • [79] Morawa R., Barański K. Cost Analysis of Blasting Agents at Various Methods of Initiation for Shooting Long Holes Method. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2013, 5: 45-58.
  • [80] Taggants in Explosives. NTIS PB80-192719, 04.1980.
  • [81] Zygmunt B., Wilk Z., Koślik P. Metallic Sintered Inserts for EFP Charges – Technology Concept. (in Polish) Problems of Mechatronics: Armament, Aviation, Safety Engineering 2014, 5(2): 63-76.
  • [82] Bazela R., Krysiński B., Nita M., Warchoł R. Characteristic Features of Low-vulnerability Ammunition Fuses. (in Polish) Problems of Mechatronics: Armament, Aviation, Safety Engineering 2015, 6(4): 83-94.
  • [83] Cudziło S., Maranda A., Nowaczewski J., Trębiński R., Trzciński W.A. Military Explosives. (in Polish) Częstochowa: Wyd. Wydziału Metalurgii i Inżynierii Materiałowej Politechniki Częstochowskiej, 2000.
  • [84] Florczak B., Bogusz R., Skupiński W., Chmielarek M., Dzik A. Study of the Effect of Nitrated Hydroxylterminated Polybutadiene (NHTPB) on the Properties of Heterogenous Rocket Propellants. Cent. Eur. J. Energ. Mater. 2015, 12(4): 841-854.
  • [85] Solid Composite Rocket Propellants Based on HTPB Synthetic Rubbers. (in Polish) Florczak B. Ed., Warsaw: Instytut Przemysłu Organicznego, 2016; ISBN 978-83-914922-4-6.
  • [86] Zygmunt B., Maranda A., Buczkowski D. Third Generation Explosives. (in Polish) Warsaw:Wyd. Wojskowa Akademia Techniczna, 2010.
  • [87] Zygmunt B. Detonation Parameters of Mixtures Containing Ammonium Nitrate and Aluminium. Cent. Eur. J. Energ. Mater. 2009, 6(1): 57-66.
  • [88] Xu H., Pang W., Guo H., Zhao F., Wang. Y., Sun Z. Combustion Characteristics and Mechanism of Boronbased, Fuel Rich Propellants with Agglomerated Boron Powder. Cent. Eur. J. Energ. Mater. 2014, 11(4):575-587.
  • [89] Vadhe P.P., Pawar R.B., Sinha R.K., Asthana S.N., Subhamanda Rao A. Cast Aluminized Explosives (Review). Combust. Explos. Shock Waves 2008, 44: 461-467.
  • [90] Sazaki T., Date S., Satoh J.-i. Study on the Effects of Addition of Boron Particles to RDX-based PBX Regarding Prevention of Neumann Effect. Mater. Sci. Forum 2004, 465-466: 195-200.
  • [91] Babar Z.-ud-d., Malik A.Q. Thermal Decomposition, Ignition and Kinetic Evaluation of Magnesium and Aluminum Fuelled Pyrotechnic Compositions. Cent. Eur. J. Energ. Mater. 2015, 12(3): 579-592.
  • [92] Zohari N., Keshavarz M.H., Seyedsajadi S.A. The Advantages and Shortcomings of Using Nano-sized Energetic Materials. Cent. Eur. J. Energ. Mater. 2013, 10(1): 135-147.
  • [93] Florczak B. Ammonium Nitrate – Prospective Oxidizer for High Energy Density Materials. (in Polish) Przem. Chem. 2011, 90(4): 597-601.
  • [94] Sałaciński T. A New Method of Description of Composition of Explosives. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2014, 6: 72-77.
  • [95] Wachowski L. Chemical Environmental Hazards. [in:] Ecology Science Compendium. (in Polish) Strzałko J., Mossor-Pieraszewska T. Eds., Warsaw: PWN, 2009; ISBN 83-01-13589-1.
  • [96] Manaham S.E. Environmental Chemistry. Chelsea: Lewis Publishers, Inc., 1991.
  • [97] Warren D.S., Holbrook W.S., Dale A.D., Whelan L.N., Elyn M., Grimm W., Jentsch A. Biodiversity and Heterogeneous Disturbance Regime on Military Training Lands. Restor. Ecol. 2007, 15(4): 606-612.
  • [98] Martel R., Mailloux M., Gabriel U., Lefebvre R., Thiboutot S., Ampleman G. Behavior of Energetic Materials in Ground Water at an Anti-Tank Range. J. Environ. Qual. 2009, 38: 75-92.
  • [99] Walsh M.R., Walsh M.E, Amplenam G., Thiboutot S., Brochu S., Jenkins T.F. Munitions Propellants Residue Deposition Rates on Military Training Ranges. Propellants Explos. Pyrotech. 2012, 37(4):393-406.
  • [100] Walsh M.R., Walsh M.E, Hevitt A.D. Energetic Residue from Field Disposal of Gun Propellants. J. Hazard. Mater. 2010, 173: 115-122.
  • [101] Sanderson P., Naidu R., Bolan N. Ecotoxicity of Chemically Stabilised Metal(loid)s in Shooting Range Soils. Ecotox. Environ. Safe. 2014, 100: 201-208.
  • [102] Petre R., Rotariu T., Zecheru T., Petrea N., Bajenaru S. Environmental Long Term Impact on a Romanian Military Testing Range. Cent. Eur. J. Energ. Mater. 2016, 13(1): 3-19
  • [103] Ariz A., Ali W.K.W. Effect of Oxidizer-Fuel Mixture Ratio to the Pressure Exponent of Ammonium Perchlorate Based Composite Propellant. Appl. Mech. Mat. 2011, 1380-1386: 110-116.
  • [104] Szastok M. The Effect of High Temperature on Selected Parameters of Emulsion Explosives. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2015, 7: 106-109.
  • [105] Papliński A., Maranda A. Investigation of the Influence of Cooling Salts upon the Explosive Performance of Emulsion Explosives. Cent. Eur. J. Energ. Mater. 2015, 12(3): 523-535.
  • [106] Maranda A. Methods for Testing Sensitivity of Explosives to External Stimuli in the View of ADR Regulations, Polish and European Standards. (in Polish) Górnictwo i Geoinżynieria 2004, 28(3/1):349-360.
  • [107] Mathieu J., Stucki H. Military High Explosives. Chimia 2004, 58(6): 383-389.
  • [108] Heilman H.M., Wiessman U., Stenstrom M.K. Kinetics of the Alkaline Hydrolysis of High Explosives RDX and HMX Solutions and Adsorbed to Activated Carbon. Environ. Sci. Technol. 1996, 30(5):1485-1492.
  • [109] Regulation of the Minister of Economy of 16 July 2015 on the Acceptance of Waste for Depositing in a Landfill. (in Polish) J. of Laws (Dz. U.) 2015, item 1277.
  • [110] Kritzer P. Corrosion in High-temperature and Supercritical Water and Aqueous Solutions: a Review. J. Supercrit. Fluids 2004, 29(1-2): 1-29.
  • [111] Munter R. Advanced Oxidation Processes – Current Status and Prospects. Proc. Estonian Acad. Sci. Chem. 2001, 50(2): 59-80.
  • [112] Bulusu S.N. Chemistry of Energetic Materials. Kluwer Academic Publishers, 1990, pp. 21-49.
  • [113] Smoleński D., Heger L. Combustion and Detonation. [in:] General Issues in Modern Technology. (in Polish) Vol. 9, Warsaw: PWN, 1964.
  • [114] Panikov N.S., Sizova M.V., Ros D., Christodoulatos C.J., Balas W., Nicolich S. Biodegradation Kinetics of the Nitramine Explosive CL-20 in Soil and Microbial Cultures. J. Biodegr. 2007, 18(3): 317-332.
  • [115] Lewis D.H., Wong E.Y., English W.D. Utilization of Alternate Propellants to Reduce Stratospheric Ozone Depletion. Space and Missile Systems Center El Segundo, California, 1994.
  • [116] Jing S., Liu Y., Liu D., Guo J. Research on a New Synthesis of LLM-105 Using N-Nitroso-bis(cyanomethyl) amine. Cent. Eur. J. Energ. Mater. 2016, 13(1): 21-33.
  • [117] Wardle R.B., Hinshaw J.C., Braithwaite P., Rose M., Johnston G., Jones R., Poush K. Synthesis of the Caged Nitramine HNIW (CL-20). Proc. 27th Int. Ann. Conf. ICT, Karlsruhe, Germany, 1996, V27:1-10.
  • [118] Gołofit T., Książczak A. Using DSC and DTA Methods to Estimate Safety Parameters of High Energy Materials using Ammonium Dinitramine as an Example. (in Polish) Problems of Mechatronics: Armament, Aviation, Safety Engineering 2011, 2(3): 31-42.
  • [119] Fronabarger W.J., Williams D.M., Stern G.A., Parrish A.D. MTX-1 – A Potential Replacement for Tetrazene in Primers. Cent. Eur. J. Energ. Mater. 2016, 13(1): 33-52.
  • [120] Ross M.H., Edward H.M. Solid Composite Propellant Containing Lithium Perchlorate and Polyamide Polymers. Patent US 3094444, 1958.
  • [121] Li J., Brill T.B. Nanostructural Energetic Composites of CL-20 and Binders Synthesized by Sol-Gel Methods. Propellants Explos. Pyrotech. 2006, 31(1): 61-69.
  • [122] Badgujar D.M., Talawar M.B., Asthama S.N., Mashulikar P.P. Advances in Science and Technology of Modern Energetic Materials, An Overview. J. Hazard Mater. 2008, 151: 295-305.
  • [123] Nagamachi M.Y., Oliveira J.I.S, Kawamoto A.M. AND – The New Oxidizer Around the Corner for an Environmentally Friendly Smokeless Propellant. J. Aeroesp. Technol. Manage. 2009, 1(2): 153-160.
  • [124] Frankel M.B., Grant L.R., Flanagan J.E. Historical Development of Glicydyl Amine Polymer. J. Propuls. Power 1992, 8: 560-563.
  • [125] Murali Mohan Y., Padmanabha Raju M., Mohana Raju K. Synthesis, Spectral and DSC Analysis of Glicydyl Azide Polymers Containing Different Initiating Diol Units. J. Appl. Polym. Sci. 2004, 93(5):2157-2163.
  • [126] Lempert B.D., Dorofeenko M.E. Quantitative Variations Resulting from the Gradual Replacement of NO2 with NF2-Fragments in Energetic Materials. Cent. Eur. J. Energ. Mater. 2015, 12(1): 35-46.
  • [127] Liu Y., Zhang R., Feng C.-G., Yang L., Zhang T.-L. Predicted Crystals Structures, Analysis, Impact Sensitivities and Morphology of Solid High-energy Complexes: Alkaline-earth Carbohydrazide Perchlorates. Cent. Eur. J. Energ. Mater. 2015, 12(2): 229-248.
  • [128] Singh R.P., Verma R.D., Meshri D.T., Shreeve J.M. Nitrogen-Rich Salts for Ionic Liquids. Angew. Chem., Int. Ed. 2006, 45(22): 3584-3601.
  • [129] Eaton P.E.. Zhang M.X., Gilardi R. Octanitrocubane: a New Nitrocarbon. Propellants Explos. Pyrotech. 2002, 27(1): 1-6.
  • [130] Griffin G.W., Marchand A.P. Synthesis and Chemistry of Cubanes. Chem. Rev. 1989, 89(5): 997-1010.
  • [131] Marchand A.P. Synthesis of New High Energy/High Density Monomers and Polymers. Synthesis of D3-Hexa-nitro-tris-homocubane. Proc. Naval Workshop on Energetic Crystalline Materials, Publication Office of Naval Research, Maryland, 1989.
  • [132] Pant A., Seth T., Raut B.V., Gajbhiye V.P., Newale S.P., Nandi A.K., Prasanth H., Pandey R.K. Preparation of Nano Aluminium Powder (NAP) Using a Thermal Plasma: Process Development and Characterization. Cent. Eur. J. Energ. Mater. 2016, 13(1): 53-71.
  • [133] Murawski J.R., Ball W.D. Aminonitronaphtalenes as Possible High Energy Density Materials. Cent. Eur. J. Energ. Mater. 2015, 12(1): 3-12.
Uwagi
Artykuł został pierwotnie opublikowany w jęz. polskim w Materiały Wysokoenergetyczne 2017, 9: 40-55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31ee6c57-1956-42ed-abfd-1d22ed0be8c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.