PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Parametric sensitivity of a CFD model concerning the hydrodynamics of trickle-bed reactor (TBR)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present study was to investigate the sensitivity of a multiphase Eulerian CFD model with respect to relations defining drag forces between phases. The mean relative error as well as standard deviation of experimental and computed values of pressure gradient and average liquid holdup were used as validation criteria of the model. Comparative basis for simulations was our own data-base obtained in experiments carried out in a TBR operating at a co-current downward gas and liquid flow. Estimated errors showed that the classical equations of Attou et al. (1999) defining the friction factors Fjk approximate experimental values of hydrodynamic parameters with the best agreement. Taking this into account one can recommend to apply chosen equations in the momentum balances of TBR.
Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 30 poz., il.
Twórcy
autor
  • Department of Process Engineering, University of Opole, ul. Dmowskiego 7-9, 45-365 Opole, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • 1. Al-Dahhan M.H., Dudukovic M.P., 1994. Pressure drop and liquid holdup in high pressure trickle-bed reactors. Chem. Eng. Sci., 49, 5681-5698. DOI: 10.1016/0009-2509(94)00315-7.
  • 2. Al-Dahhan M.H., Larachi F., Dudukovic M.P., Laurent A., 1997. High pressure trickle-bed reactors: A review. Ind. Eng. Chem. Res., 36, 3292-3314. DOI: 10.1021/ie9700829.
  • 3. Atta A., Shantanu R., Nigam K.D.P., 2007a. Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD. Chem. Eng. Sci., 62, 5870-5879. DOI: 10.1016/j.ces.2007.06.008.
  • 4. Atta A., Shantanu R., Nigam K.D.P., 2007b. Investigation of liquid maldistribution in trickle bed reactor using porous media concept in CFD. Chem. Eng. Sci., 62, 7033-7044. DOI: 10.1016/j.ces.2007.07.069.
  • 5. Attou A., Boyer C., Ferschneider G., 1999. Modeling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chem. Eng. Sci. 54. 785-802, DOI: 10.1016/s0009-2509(98)00285-1.
  • 6. Bartelmus G., Janecki D., 2003. Hydrodynamics of a cocurrent downflow of gas and foaming liquid through the packed bed. Part II. Liquid holdup and gas pressure drop. Chem. Eng. Process., 42, 993-1005. DOI: 10.1016/S0255-2701(03)00005-9.
  • 7. Burghardt A., 2014 Eulerian three-phase flow model applied to trickle-bed reactors. Chem. Process Eng., 35, 75-96. DOI: 10.2478/cpe-2014-0006.
  • 8. Burghardt A., Bartelmus G., Janecki D., Szlemp A., 2002. Hydrodynamics of a three-phase fixed-bed reactor operating in the pulsing flow regime at an elevated pressure. Chem. Eng. Sci., 57, 4855-4863. DOI: 10.1016/s0009-2509(02)00279-8.
  • 9. Burghardt A., Bartelmus G., Szlemp A., Janecki D., 2005. Analiza matematycznych kryteriów zmiany reżimów hydrodynamicznych w reaktorach trójfazowych. Chem. Process Eng., 26, 259-279.
  • 10. Charpentier J.C., Favier M., 1975. Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AJChE J., 21, 1213-1218. DOI: 10.1002/aic.690210626.
  • 11. Gunjal P.R., Kashid M.N., Ranade V.V., Chaudhari R.V., 2005. Hydrodynamics of trickle-bed reactors: Experiments and CFD modeling. Ind. Eng. Chem. Res., 44, 6278-6294. DOI: 10.1021/ie0491037.
  • 12. Gunjal P.R., Ranade V.V., 2007. Modeling of laboratory and commercial scale hydro-processing reactors using CFD. Chem. Eng. Sci., 62. 5512-5526. DOI: 10.1016/j.ces.2007.01.078.
  • 13. Hamidipour M., Chen J., Larachi F., 2013. CFD study and experimental validation of trickle bed hydrodynamics under gas, liquid and gas/liquid alternating cyclic operations. Chem. Eng. Sci., 89, 158-170. DOI: 10.1016/j.ces.2012.11.041.
  • 14. Holub R.A., Duduković P.A., Ramachandran P.A., 1992. A phenomenological model for pressure drop, liquid holdup and flow regime transition in gas-liquid trickle flow. Chem. Eng. Sci., 47, 2343-2348. DOI: 10.1016/0009-2509(92)87058-x.
  • 15. Janecki D., Burghardt A., Bartelmus G., 2007. The hydrodynamics of cocurrent gas and liquid flow through a packed bed. Modelling by means of computational fluid dynamics (CFD). Chem. Process Eng., 28, 361-37.
  • 16. Janecki D., Burghardt A., Bartelmus G., 2014. Influence of the porosity profile and sets of Ergun constants on the main hydrodynamic parameters in the trickle-bed reactors. Chem. Eng. J., 237, 176-188. DOI: 10.1016/j.cej.2013.09.102.
  • 17. Jiang Y., Khadilkar M.R., Al-Dahhan M.H., Dudukovic M.P., 2001. CFD modelling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catal. Today, 66, 209-218. DOI: 10.1016/s0920-5861(00)00642-8.
  • 18. Jiang Y., Khadilkar M.R., Al-Dahhan M.H., Dudukovic M.P., 2002a. CFD of multiphase flow in packed-bed reactors: I. K-fluid modelling issues. AIChE J., 48, 701-715. DOI: 10.1002/aic.690480406.
  • 19. Jiang Y., Khadilkar M.R., Al-Dahhan M.H., Dudukovic M.P., 2002b. CFD of multiphase flow in packed-bed reactors: II. Results and applications. AIChE J., 48, 716-730. DOI: 10.1002/aic.690480407.
  • 20. Kuzeljevic Z.V., Dudukovic M.P., 2012. Computational modeling of trickle bed reactors. Ind. Eng. Chem. Res., 51, 1663-1671. DOI: 10.1021/ie2007449.
  • 21. Lappalainen K., Manninen M., Alopaeus V., 2009. CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chem. Eng. Sci., 64, 207-218. DOI: 10.1016/j.ces.2008.10.009.
  • 22. Larachi F., Laurent A., Midoux N., Wild G., 1991. Experimental study of a trickle-bed reactor operating at high pressure: Two phase pressure drop and liquid saturation. Chem. Eng. Sci., 46, 1233-1246. DOI: 10.1016/0009-2509(91)85051-x.
  • 23. Midoux N., Favier M., Charpentier J.C., 1976. Flow pattern, pressure loss and liquid holdup data in gas-liquid downflow packed beds with foaming and nonfoaming hydrocarbons. J. Chem. Eng. Japan, 9, 350-356. DOI: 10.1252/jcej.9.350.
  • 24. Mills P.L., Dudukovic M.P., 1981. Evaluation of liquid-solid contacting in trickle-bed reactors by tracer methods. AIChE J., 27, 893-904. DOI: 10.1002/aic.690270604.
  • 25. Saez A.E., Carbonell R.G., 1985. Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. AIChE J., 31, 52-62. DOI: 10.1002/aic.690310105.
  • 26. Sai P.S.T., Varma Y.B.G., 1987. Pressure drop in gas-liquid downflow through packed beds, AIChE J., 33, 2027-2036. DOI: 10.1002/aic.690331213.
  • 27. Saroha A.K., Nigam K.D.P., 1996. Trickle bed reactors. Rev. Chem. Eng., 12, 207-347. DOI: 10.1515/REVCE.1996.12.3-4.207.
  • 28. Specchia V., Baldi G., 1977. Pressure drop and liquid hold-up for two phase cocurrent flow in packed beds. Chem. Eng. Sci., 32, 515-532. DOI: 10.1016/0009-2509(77)87008-5.
  • 29. Szlemp A., Bartelmus G., Janecki D., 2001. Hydrodynamics of a co-current three-phase solid-bed reactor for foaming systems. Chem. Eng. Sci., 56, 1111-1116. DOI:10.1016/S0009-2509(00)00328-6.
  • 30. Wammes W.J.A., Middelkamp J., Huisman W.J., deBaas C.M., Westerterp K.R., 1991. Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures. AIChE J., 37, 1849-1861. DOI: 10.1002/aic.690371210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31e7b697-a422-4447-853a-257beed97985
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.