Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study introduces an innovative algorithm that leverages terrestrial laser scanning (TLS) and the fuzzy analytic hierarchy process (FAHP) for the optimization of building repair methodologies. Focusing on multi-criteria decision-making (MCDM), itshowcases a methodology for evaluating and selecting the most effective repair strategy for building elements, balancing various conflicting criteria. The research applies TLS for rapid and accurate geometric data acquisition of engineering structures, demonstrating its utility in structural diagnostics and technical condition assessment. A case study on a single-family residential building, experiencing floor deformation in a principal ground-floor room, illustrates the practical application. Maximum deflection and floor deflection distribution were measured using TLS. Utilizing FAHP for analysis, the decision model identifies the most advantageous repair method from a building user’s perspective. This approach not only provides a systematic framework for selecting optimal repair solutions but also highlights the potential of integrating advanced scanning technologies and decision-support methods in the field of building materials and structural engineering.
Rocznik
Tom
Strony
art. no. e151382
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Department of Construction and Geoengineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94E, 60-649 Poznan, Poland
autor
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
autor
- Department of Construction and Geoengineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94E, 60-649 Poznan, Poland
Bibliografia
- [1] B. Ksit and A. Szymczak-Graczyk, “Rare weather phenomena and the work of large-format roof coverings,” Civ. Environ. Eng. Rep., vol. 29, no. 3, pp. 123–133, 2019, doi: doi.org/10.2478/ceer-2019-0029.
- [2] A. Szymczak-Graczyk, I. Laks, B. Ksit, and M. Ratajczak, “Analysis of the impact of omitted accidental actions and the method of land use on the number of construction disasters (a case study of Poland),” Sustainability, vol. 13, no. 2, p. 618, 2021, doi: 10.3390/su13020618.
- [3] R. Nowak, R. Orłowicz, and R. Rutkowski, “Use of TLS (Li-DAR) for building diagnostics with the example of a historic building in Karlino,” Buildings, vol. 10, no. 2, p. 24, 2020, doi: 10.3390/buildings10020024.
- [4] A. Szymczak-Graczyk, Z. Walczak, B. Ksit, and Z. Szyguła, “Multi-criteria diagnostics of historic buildings with the use of 3D laser scanning (a case study),” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140373, 2022, doi: 10.24425/bpasts.2022.140373.
- [5] A. Berberan, I. Ferreira, E. Portela, S. Oliveira, A. Oliveira, and B. Baptista, “Overview on terrestrial laser scanning as a tool for dam surveillance,” in 6th International Dam Engineering Conference. LNEC, Lisboa, 2011.
- [6] S.J. Gordon, D. Lichti, M. Stewart, and J. Franke, “Structural deformation measurement using terrestrial laser scanners,” Proc. 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003.
- [7] M. Kopras, W. Buczkowski, A. Szymczak-Graczyk, Z. Walczak, and S. Gogolik, “Experimental Validation of Deflections of Temporary Excavation Support Plates with the Use of 3D Modelling,” Materials, vol. 15, no. 14, p. 14, 2022, doi: 10.3390/ma15144856.
- [8] P. Gleń and K. Krupa, “Comparative analysis of the inventory process using manual measurements and laser scanning,” Budownictwo i Architektura, vol. 18, no. 2, pp. 021–030, 2019, doi: 10.35784/bud-arch.552.
- [9] Y.S. Hayakawa and H. Obanawa, “Volume Measurement of Coastal Bedrock Erosion Using UAV and TLS,” in IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 5230–5233, doi: 10.1109/IGARSS39084.2020.9323220.
- [10] M. Mohammadi, M. Rashidi, V. Mousavi, A. Karami, Y. Yu, and B. Samali, “Quality evaluation of digital twins generated based on UAV photogrammetry and TLS: Bridge case study,” Remote Sens., vol. 13, no. 17, p. 3499, 2021, doi: 10.3390/rs13173499.
- [11] S.W. Son, D.W. Kim, W.G. Sung, and J.J. Yu, “Integrating UAV and TLS approaches for environmental management: A case study of a waste stockpile area,” Remote Sens., vol. 12, no. 10, p. 1615, 2020, doi: 10.3390/rs12101615.
- [12] Y. Zang, B. Yang, J. Li, and H. Guan, “An accurate TLS and UAV image point clouds registration method for deformation detection of chaotic hillside areas,” Remote Sens., vol. 11, no. 6, p. 647, 2019, doi: 10.3390/rs11060647.
- [13] T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. J. Serv. Sci., vol. 1, no. 1, pp. 83–98, 2008, doi: 10.1504/IJSSCI.2008.017590.
- [14] A. Darko, A.P.C. Chan, E.E. Ameyaw, E.K. Owusu, E. Pärn, and D.J. Edwards, “Review of application of analytic hierarchy process (AHP) in construction,” Int. J. Constr. Manag., vol. 19, no. 5, pp. 436–452, 2019, doi: 10.1080/15623599.2018.1452098.
- [15] P.O. Akadiri, P.O. Olomolaiye, and E.A. Chinyio, “Multi-criteria evaluation model for the selection of sustainable materials for building projects,” Autom. Constr., vol. 30, pp. 113–125, 2013, doi: 10.1016/j.autcon.2012.10.004.
- [16] C.J. Hopfe, G.L. Augenbroe, and J.L. Hensen, “Multi-criteria decision making under uncertainty in building performance assessment,” Build. Environ., vol. 69, pp. 81–90, 2013, doi: 10.1016/j.buildenv.2013.07.019.
- [17] D.E. Ighravwe and S.A. Oke, “A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria,” J. Build. Eng., vol. 24, p. 100753, 2019, doi: 10.1016/j.jobe.2019.100753.
- [18] C.-H. Chen, “A novel multi-criteria decision-making model for building material supplier selection based on entropy-AHP weighted TOPSIS,” Entropy, vol. 22, no. 2, p. 259, 2020, doi: 10.3390/e22020259.
- [19] H.-A.A.F. Haroun, A.F. Bakr, and A.E.-S. Hasan, “Multi-criteria decision making for adaptive reuse of heritage buildings: Aziza Fahmy Palace, Alexandria, Egypt,” Alex. Eng. J., vol. 58, no. 2, pp. 467–478, 2019, doi: 10.1016/j.aej.2019.04.003.
- [20] T. Demirel, N.Ç. Demirel, and C. Kahraman, “Fuzzy analytic hierarchy process and its application,” in Fuzzy multi-criteria decision making, Springer, 2008, pp. 53–83.
- [21] Y. Liu, C.M. Eckert, and C. Earl, “A review of fuzzy AHP methods for decision-making with subjective judgements,” Expert Syst. Appl., vol. 161, p. 113738, 2020, doi: 10.1016/j.eswa.2020.113738.
- [22] A.N. Patil, “Fuzzy AHP methodology and its sole applications,” Int. J. Manag. Res. Rev., vol. 8, no. 5, pp. 24–32, 2018.
- [23] J.J. Buckley and V.R.R. Uppuluri, “Fuzzy hierarchical analysis,” in Uncertainty in Risk Assessment, Risk Management, and Decision Making, Springer, 1987, pp. 389–401.
- [24] F.K. Gündoğdu and C. Kahraman, “A novel spherical fuzzy analytic hierarchy process and its renewable energy application,” Soft Comput., vol. 24, no. 6, pp. 4607–4621, 2020, doi: 10.1007/s00500-019-04222-w.
- [25] I. Laks, Z. Walczak, and N. Walczak, “Fuzzy analytical hierarchy process methods in changing the damming level of a small hydropower plant: Case study of Rosko SHP in Poland,” Water Resour. Ind., vol. 29, p. 100204, 2023, doi: 10.1016/j.wri.2023.100204.
- [26] B.C. Balusa and A.K. Gorai, “Sensitivity analysis of fuzzy-analytic hierarchical process (FAHP) decision-making model in selection of underground metal mining method,” J. Sustain. Min., vol. 18, no. 1, pp. 8–17, 2019, doi: 10.1016/j.jsm.2018.10.003.
- [27] L. Serrano-Gomez and J.I. Munoz-Hernandez, “Monte Carlo approach to fuzzy AHP risk analysis in renewable energy construction projects,” PloS One, vol. 14, no. 6, p. e0215943, 2019, doi: 10.1371/journal.pone.0215943.
- [28] T.L. Saaty, “How to make a decision: the analytic hierarchy process,” Eur. J. Oper. Res., vol. 48, no. 1, pp. 9–26, 1990, doi: 10.1016/0377-2217(90)90057-I.
- [29] J. Krejčí, O. Pavlačka, and J. Talašová, “A fuzzy extension of Analytic Hierarchy Process based on the constrained fuzzy arithmetic,” Fuzzy Optim. Decis. Mak., vol. 16, no. 1, pp. 89–110, 2017, doi: 10.1007/s10700-016-9241-0.
- [30] S. Tesfamariam and R. Sadiq, “Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP),” Stoch. Environ. Res. Risk Assess., vol. 21, no. 1, pp. 35–50, 2006, doi: 10.1007/s00477-006-0042-9.
- [31] R.W. Saaty, “The analytic hierarchy process – what it is and how it is used,” Math. Model., vol. 9, no. 3, pp. 161–176, Jan. 1987, doi: 10.1016/0270-0255(87)90473-8.
- [32] R.R. Yager and R.R. Yager, “On a general class of fuzzy connectives,” Fuzzy Sets Syst., vol. 4, no. 3, pp. 235–242, 1980, doi: 10.1016/0165-0114(80)90013-5.
- [33] M. Enea and T. Piazza, “Project selection by constrained fuzzy AHP,” Fuzzy Optim. Decis. Mak., vol. 3, no. 1, pp. 39–62, 2004, doi: 10.1023/B:FODM.0000013071.63614.3d.
- [34] J. Caha and A. Drážná, “Information about FuzzyAHP Package for R (ver.0.9.5)”. 2019. [Online]. Available: https://cran.r-project.org/web/packages/FuzzyAHP/FuzzyAHP.pdf (Accessed: Jul. 22, 2022.
- [35] M. Topolnicki, “Underpinning and lifting of civil engineering structures using controlled grouting processes – Podchwytywanie i podnoszenie obiektów budowlanych za pomocą kontrolowanych iniekcji geotechnicznych,” XXV Konferencja Naukowo-Techniczna “Awarie Budowlane”, Międzyzdroje, Poland, vol. 24, no. 27.5, pp. 175–200, 2011 (in Polish).
- [36] M. Gwóźdź-Lasoń, “Numerical models of the subsoil reinforced by different kind of methods and technology,” PhD Thesis, Politechnika Krakowska im. Tadeusza Kościuszki, Kraków, 2007. [Online]. Available: https://www.academia.edu/download/49792936/2007_GwozdzLasonM_ModeleObliczeniowe.pdf (Accessed: Apr. 22, 2023). (in Polish)
- [37] E. Falk, “Bodenverbesserung durch Feststoffeinpressung mittels hydraulischer Energie. Doctoral dissertation,” Technischen Universität Wien, Vienna, 1998.
- [38] A. Poteraj-Oleksiak, “Poziomowanie i stabilizacja gruntów – zalety metody iniekcji geopolimerowych,” Mag. Autostrady, no. 11–12, pp. 46–49, 2018.
- [39] A. Poteraj-Oleksiak, “Szybka technologia napraw oraz podnoszenia parametrów wytrzymałości konstrukcji nawierzchni drogowych przy pomocy iniekcji geopolimerowych,” Drogownictwo, no. 6, pp. 171–177, 2019.
- [40] PN-B 03264:2002., Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statycznie i wymiarowanie, 2002.
- [41] W. Buczkowski, A. Szymczak-Graczyk, and Z. Walczak, “Experimental validation of numerical static calculations for a monolithic rectangular tank with walls of trapezoidal cross-section,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 799–804, 2017, doi: 10.1515/bpasts-2017-0088.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31e6bb20-21ac-4b28-97cb-c1d0da3d84d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.