PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and Experimental Studies on 3D Printed Compliant Mechanisms in Gripper Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes two versions of a gripper's fingers that utilize compliant revolute kinematic pairs in their operation. The goal in designing the gripper was to create a universal structure that allows for easy adjustment of torsional stiffness and maximum rotation angle as needed. Two compliant revolute joints were proposed and applied in the creation of two versions of the gripper’s fingers. In both joints, one geometric parameter was selected for variation. Finite element analysis was conducted to calculate the statics within the parameter range. Based on the calculations, stiffness charts were created as a function of parameter values. Subsequently, using 3D printing technology in resin, two gripper fingers were produced. Experimental tests were conducted on these fingers to assess their torsional stiffness. The computational and experimental results were compared. The designed fingers are best suited for pneumatic grippers. When using them, complex force control can be eliminated because the gripping force increases gradually in accordance with the compliance of the gripper, rather than abruptly. The fingers also exhibit different stiffness characteristics depending on the direction of the grip - outward or inward.
Twórcy
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
Bibliografia
  • 1. Howell L.L. Compliant Mechanisms. In: McCarthy J., Editors. 21st Century Kinematics. Springer, London, 2013, 189–216.
  • 2. Liu T., Hao G. Design of deployable structures by using bistable compliant mechanisms. Micromachines 2022; 13(5): 651.
  • 3. Carollo G., Ingrassia T., Pantano A. Design of a low cost 3D printable single-component compliant mechanism for FWMAV’s wing actuation. In: Proc. of the Second International Conference on Design Tools and Methods in Industrial Engineering, Rome, Italy 2021: 39–49.
  • 4. Ames D.C., Smith G.L., Nathan L., Howell L.L., Magleby S.P. Laser forming of compliant mechanisms. ASME Open Journal of Engineering 2023 January; 2.
  • 5. Stankiewicz G., Dev C., Steinmann P. Geometrically nonlinear design of compliant mechanisms: Topology and shape optimization with stress and curvature constraints. Computer Methods in Applied Mechanics and Engineering 2022 July 1; 397: 115161.
  • 6. Hargrove B., Nastevska A., Frecker M., Jovanova J. Pseudo rigid body model for a nonlinear folding compliant mechanism. Mechanism and Machine Theory 2022 October; 176: 105017.
  • 7. Zolfagharian A., Mohammad L., Ranjbar S., Tadesse Y., Bodaghi M. 3D printing non-assembly compliant joints for soft robotics. Results in Engineering 2022 September; 15: 100558.
  • 8. Xiu H., Han Y., Wang X., Zhang Y., Liang W., Wei G., et al. Design, development, and clinical validation of a two degrees of freedom compliant ankle-foot prosthesis based on a 4-4r parallel mechanism. Mechanism and Machine Theory 2022 June; 172: 104818.
  • 9. Stojiljković D., Milošević M., Ristić-Durrant D., Nikolić V., Pavlović N.T., Ćirić I., et al. Simulation, analysis, and experimentation of the compli- ant finger as a part of hand-compliant mechanism development. Applied Sciences 2023; 13(4): 2490.
  • 10. Ma W., Liu X., Qiu X., Zhou Y., Liu Y., Fu W., et al. Comparative folding/unfolding performance of notch-type compliant joints. Case Studies in Construction Materials 2023 July; 18: e01760.
  • 11. Chen K., Lai T., Yang F., Zhang J., Yao L. A one DOF compliant gripper mechanism with four identical twofold-symmetric Bricard linkages. Robotica 2023; 41(4): 1098–1114.
  • 12. Zhang Q., Liu P., Yan P. Design and test of a curved-beam based compliant gripper for manipulations of actively deformable objects. IEEE Access 2022; 10: 102701–102709.
  • 13. Fu J., Lin H., Prathyush I.V.S., Huang X., Zheng L., Gan D. A novel discrete variable stiffness gripper based on the fin ray effect. In: Proc. of the 15th International Conference on Intelligent Robotics and Applications, Harbin, China 2022, 791–802.
  • 14. Teeple C.B., Werfel J., Wood R.J. Multi-dimensional compliance of soft grippers enables gentle interaction with thin, flexible objects. In: Proc. Of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA 2022, 728–734.
  • 15. Szczesiak R., Kowalik M., Cader M. Parametryczny model numeryczny do predykcji właściwości mechanicznych struktur wytwarzanych w technologii FDM z materiałów polimerowych, Polimery, 2018, 63(9): 952–958. DOI:10.14314/polimery.2018.9.7
  • 16. Phrozen Aqua 4K 3D printing resin. [Access: 2023 Oct. 11]. https://phrozen3d.com/products/ aqua-gray-4k-resin-phrozen#specs.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31e46fc2-86ec-49f6-8470-eb8b4640057f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.