PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic deformation and inclined magnetic field on entropy generation forwalter’s liquid B fluid over a stretching sheet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytical solution is presented for entropy generation on MHD Walter’s liquid B fluid over a stretching sheet with elastic deformation. The governing expressions of PDEs are converted into ODEs by suitable transformation which is solved by a hypergeometric function. Plots for velocity, heat transfer, entropy generation and a Bejan number are examined and their behavior is deliberated for several physical parameters. It is noticed that the entropy generation is minimized for an Eckert number and enhanced for an elastic deformation parameter. Moreover, these two parameters on the Bejan number profile have reverse effects.
Rocznik
Strony
85--98
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, Sri Vidhya Mandir Arts and Science College Uthangarai - 636902, India
  • Department of Mathematics, Sri Vidhya Mandir Arts and Science College Uthangarai - 636902, India
  • Department of Mathematics, Padmavani Arts & Science College for Women Salem - 636 011, India
  • Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science Coimbatore - 641 020, India abdulhakeem6@gmail.com
autor
  • Department of Mathematics, Providence College for Women, Coonoor - 643104, India
Bibliografia
  • [1] Baag, S., Mishra, S.R., Dash, G.C., & Acharya, M.R. (2017). Entropy generation analysis for viscoelastic MHD flow over a stretching sheet embedded in a porous medium. Ain Shams Engineering Journal, 8, 623-632.
  • [2] Abdul Hakeem, A.K., Govindaraju, M., & Ganga, B. (2018). Influence of inclined Lorentz forces on entropy generation analysis for viscoelastic fluid over a stretching sheet with nonlinear thermal radiation and heat source/sink. Journal of Heat and Mass Transfer Research, DOI: 10.22075/JHMTR.2018.13611.1198.
  • [3] Mirzazadeh, M., Shafaei, A., & Rashidi, F. (2008). Entropy analysis for non-linear viscoelastic fluid in concentric rotating cylinders. International Journal of Thermal Sciences, 47, 1701-1711.
  • [4] Chin-Chia Liu, & Cheng-Ying Lo,(2012). Numerical analysis of entropy generation in mixedconvection MHD flow in vertical channel. International Communications in Heat and Mass Transfer, 39, 1354-1359.
  • [5] Animasaun, I.L., Raju, C.S.K., & Sandeep, N. (2016). Unequal diffusivities case of homogeneous heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alexandria Engineering Journal, 55, 1595-1606.
  • [6] Mair Khan, Malik, M.Y., Salahuddin, T., & Arif. Hussian, (2018). Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet. Results in Physics, 8, 862-868.
  • [7] Tasawar Hayat, Sajid Qayyum, Ahmed Alsaedi,& Anum Shafiq. (2016). Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. International Journal of Heat and Mass Transfer, 103, 99-107.
  • [8] Farooq, M., Ijaz Khan, M., Waqas, M., Hayat, T., Alsaedi, A., & M. Imran Khan. (2016). MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. Journal of Molecular Liquids, 221, 1097-1103.
  • [9] Sheikholeslami, M., Hari R. Kataria, & Akhil S. Mittal. (2018). Effect of thermal diffusion and heat-generation on MHD nanofluid flow past an oscillating vertical plate through porous medium. Journal of Molecular Liquids, 257, 12-25.
  • [10] Sheikholeslami, M., & Rokni, H.B. (2017). Influence of melting surface on MHD nanofluid flow by means of two phase model. Chinese Journal of Physics, 55(4), 1352-1360.
  • [11] AbderrahimWakif., Zoubair Boulahia., Farhad Ali., Mohamed R. Eid, & Rachid Sehaqui. (2018). Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models. International Journal of Applied and Computational Mathematics, 4(81), 1-27.
  • [12] Mohamed R. Eid., & Kasseb L. Mahny. (2017). Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a two-phase model over a permeable stretching wall with heat generation/absorption. Advanced Powder Technology, 28(11), 3063-3073.
  • [13] Mohamed R. Eid. (2016). Chemical reaction effect on MHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation. Journal of Molecular Liquids, 220, 718-725.
  • [14] Mohamed R. Eid., & Makinde, O.D. (2018). Solar radiation effect on a magneto nanofluid flow in a porous medium with chemically reactive species. International Journal of Chemical Reactor Engineering, 20170212.
  • [15] Mohamed R. Eid, Kasseb L. Mahny, Muhammad, T., & Sheikholeslami, M. (2018). Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. Results in Physics, 8, 1185-1193.
  • [16] Nandeppanavar, M.M., Subhas Abel, M., & Jagadish Tawade. (2010). Heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink and elastic deformation. Commun. Nonlinear Sci. Numer. Simulat, 15, 1791-1802.
  • [17] Sujit Kumar Khan, Subhas Abel, M., & Ravi M. Sonth. (2003). Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation of energy and stress work. Heat and Mass Transfer, 40, 47-57.
  • [18] Abdul Hakeem, A.K., Vishnu Ganesh, N., & Ganga, B. (2014). Effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation. Journal of King Saud University - Engineering Sciences, 26(2), 168-175.
  • [19] Kalaivanan, R., Ganga, B., Vishnu Ganesh, N., & Abdul Hakeem, A.K. (2018). Effect of elastic deformation on nano-second grade fluid flow over a stretching surface. Frontiers in Heat and Mass Transfer, 10, 20-29.
  • [20] Woods, L.C. (1975). Thermodynamics of fluid Systems. Oxford: Oxford University Press.
  • [21] Afridi, M.I., Qasim, M., Ilyas Khan, &Tlili, I. (2018). Entropy generation inMHDmixed convection stagnation-point flow in the presence of Joule and frictional heating. Case Studies in Thermal Engineering, 12, 292-300.
  • [22] Turkyilmazoglu, M. (2011). Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet. International Journal of Mechanical Sciences, 53, 886-896.
  • [23] Datti, P.S., Prasad, K.V., Subhas Abel, M., & Ambuja Joshi. (2004). MHD visco-elastic fluid flow over a non-isothermal stretching sheet. International Journal of Engineering Science, 42, 935-946.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31e3af68-bd66-4988-87b9-e37fe27445cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.