PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial and temporal distribution of heavy metals in coastal core sediments from the Red Sea, Saudi Arabia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Jeddah is the most industrialized city on the west coast of Saudi Arabia and is under increasing influence of human activities. Heavy metals data were obtained from four near-coast Red Sea sediment cores in close proximity to Jeddah. Chromium, manganese, iron, copper, zinc, and lead were analyzed from depth-resolved sections of each core via heavy acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). The average concentrations of all four sites were 245.96 mg kg−1, 478.45 mg kg−1, 8506.13 mg kg−1, 251.82 mg kg−1, 623.09 mg kg−1, and 362.75 mg kg−1, respectively. The depth-resolved results showed that highest concentrations of Mn, Cu, and Pb were found in the top 15 cm of the core profile distributions compared to other depth sub-samples. Heavy metal concentrations in core sediments are increased near central Jeddah and have become higher in recent years. The results of enrichment factor calculations indicate little anthropogenic supply of Mn and Cr while Pb, Zn, and Cu show strong anthropogenic input. The Pollution Load Index was higher in the two sites closer to central Jeddah where power and desalination plants and wastewater release are known. This indicates that the area has suffered from heavy metal pollution compared to other non-industrialized sites in the Red Sea. Heavy metal contaminations due to anthropogenic activity should be taken into account to protect the Red Sea during future growth. The results of this work should be considered as a baseline for heavy metals monitoring in the sediments of the Red Sea coast near Jeddah, Saudi Arabia.
Słowa kluczowe
Czasopismo
Rocznik
Strony
262--270
Opis fizyczny
Bibliogr. 45 poz., mapy, tab., wykr.
Twórcy
autor
  • Department of Environmental Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
  • Civil and Environmental Engineering, Southern Methodist University, Dallas, USA
  • Civil and Environmental Engineering, Southern Methodist University, Dallas, USA
  • Department of Environmental Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
Bibliografia
  • [1] Abrahim, G. M. S., Parker, R. J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 136 (1), 227-238, http://dx.doi.org/10.1007/s10661-007-9678-2.
  • [2] Abu-Hilal, A., Badran, M., de Vaugelas, J., 1988. Distribution of trace elements in Callichirus laurae burrows and nearby sediments in the gulf of Aqaba, Jordan (Red Sea). Mar. Environ. Res. 25 (4), 233-248, http://dx.doi.org/10.1016/0141-1136(88)90014-1.
  • [3] Al-Najjar, T., 2011. Heavy metals pollution in sediment cores from the Gulf of Aqaba, Red Sea. Natl. Sci. 3 (9), 775-782, http://dx.doi.org/10.4236/ns.2011.39102.
  • [4] Al-Washmi, H. A., 1999. Sedimentological aspects and environmental conditions recognized from the bottom sediments of Al-Kharrar Lagoon, eastern Red Sea coastal plain, Saudi Arabia. J. King Abdulaziz Univ. Mar. Sci. 10 (1), 71-87, http://dx.doi.org/10.4197/mar.10-1.5.
  • [5] Badr, N. B. E., El-Fiky, A. A., Mostafa, A. R., Al-Mur, B. A., 2009. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ. Monit. Assess. 155 (1), 509-526, http://dx.doi.org/10.1007/s10661-008-0452-x.
  • [6] Basaham, A. S., 1998. Distribution and behaviour of some heavy metals in the surface sediments of Al-Arbaeen Lagoon, Jeddah, Red Sea Coast. JKAU Earth Sci. 10, 59-71.
  • [7] Bastami, K. D., Bagheri, H., Kheirabadi, V., Zaferani, G. G., Teymori, M. B., Hamzehpoor, A., Soltani, F., Haghparast, S., Harami, S. R. M., Ghorghani, N. F., Ganji, S., 2014. Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Mar. Pollut. Bull. 81 (1), 262-267, http://dx.doi.org/10.1016/j.marpolbul.2014.01.029.
  • [8] Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Chakraborty, S., Bhattacharya, B. D., 2007. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ. Int. 33 (3), 346-356, http://dx.doi.org/10.1016/j.envint.2006.11.013.
  • [9] Cho, J., Hyun, S., Han, J. H., Kim, S., Shin, D. H., 2015. Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea. Mar. Pollut. Bull. 95 (1), 427-432, http://dx.doi.org/10.1016/j.marpolbul.2015.03.034.
  • [10] Conrad, C. F., Fugate, D., Daus, J., Chisholm-Brause, C. J., Kuehl, S., 2007. Assessment of the historical trace metal contamination of sediments in the Elizabeth River, Virginia. Mar. Pollut. Bull. 54 (4), 385-395, http://dx.doi.org/10.1016/j.marpolbul.2006.11.005.
  • [11] Dai, J., Song, J., Li, X., Yuan, H., Li, N., Zheng, G., 2007. Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China. Environ. Pollut. 145 (3), 656-667, http://dx.doi.org/10.1016/j.envpol.2006.10.005.
  • [12] de Carvalho, R. M., dos Santos, J. A., Silva, J. A. S., do Prado, T. G., da Fonseca, A. F., Chaves, E. S., Frescura, V. L. A., 2015. Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry. Environ. Monit. Assess. 187:535, 9 pp., http://dx.doi.org/10.1007/s10661-015-4769-y.
  • [13] Delshab, H., Farshchi, P., Keshavarzi, B., 2017. Geochemical distribution, fractionation and contamination assessment of heavy metals in marine sediments of the Asaluyeh port, Persian Gulf. Mar. Pollut. Bull. 115 (1-2), 401-411, http://dx.doi.org/10.1016/j.marpolbul.2016.11.033.
  • [14] Ferati, F., Kerolli-Mustafa, M., Kraja-Ylli, A., 2015. Assessment of heavy metal contamination in water and sediments of Trepc¸a and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environ. Monit. Assess. 187:338, 15 pp., http://dx.doi.org/10.1007/s10661-015-4524-4.
  • [15] Fukue, M., Yanai, M., Sato, Y., Fujikawa, T., Furukawa, Y., Tani, S., 2006. Background values for evaluation of heavy metal contamination in sediments. J. Hazard. Mater. 136 (1), 111-119, http://dx.doi.org/10.1016/j.jhazmat.2005.11.020.
  • [16] Gasparatos, D., 2013. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules. Environ. Chem. Lett. 11 (1), 1-9, http://dx.doi.org/10.1007/s10311-012-0386-y.
  • [17] Ghandour, I. M., Basaham, S., Al-Washmi, A., Masuda, H., 2014. Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur, Red Sea, Saudi Arabia. Environ. Monit. Assess. 186 (3), 1465-1484, http://dx.doi.org/10.1007/s10661-013-3467-x.
  • [18] Hameed, A., Obaidy, M. J., Al Talib, A. H., Zaki, S. R., 2014. Environmental assessment of heavy metal distribution in sediments of Tigris River within Baghdad City. Int. J. Adv. Res. 2, 947-952.
  • [19] Ingersoll, C. G., Nelson, M. K., 1990. Testing sediment toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera). Aquat. Toxicol. Risk Assess. 43, 16-18.
  • [20] Khalil, M. K. H., El Zokm, G. M., Fahmy, M. A., Said, T. O., Shreadah, M. A., 2013. Geochemistry of some major and trace elements in sediments of Edku and Mariut Lakes, north Egypt. World Appl. Sci. J. 24, 282-294.
  • [21] Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., Gao, B., He, X., 2012. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China. PLoS ONE 7 (6), e39690, http://dx.doi.org/10.1371/journal.pone.0039690.
  • [22] Li, G., Hu, B., Bi, J., Leng, Q., Xiao, C., Yang, Z., 2013. Heavy metals distribution and contamination in surface sediments of the coastal Shandong Peninsula (Yellow Sea). Mar. Pollut. Bull. 76 (1-2), 420-426, http://dx.doi.org/10.1016/j.marpolbul.2013.08.032.
  • [23] Louriño-Cabana, B., Lesven, L., Charriau, A., Billon, G., Ouddane, B., Boughriet, A., 2011. Potential risks of metal toxicity in contaminated sediments of Deûle river in Northern France. J. Hazard. Mater. 186 (1-2), 2129-2137, http://dx.doi.org/10.1016/j.jhazmat.2010.12.124.
  • [24] Mahanta, M. J., Bhattacharyya, K. G., 2011. Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environ. Monit. Assess. 173, 221-240, http://dx.doi.org/10.1007/s10661-010-1383-x.
  • [25] Nemati, K., Bakar, N. K. a, Abas, M. R., Sobhanzadeh, E., 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 192, 402-410, http://dx.doi.org/10.1016/j.jhazmat.2011.05.039.
  • [26] Othmani, M. A., Souissi, F., Durães, N., Abdelkader, M., da Silva, E. F., 2015. Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil. Environ. Monit. Assess. 187:523, 18 pp., http://dx.doi.org/10.1007/s10661-015-4734-9.
  • [27] Pan, K., Lee, O. O., Qian, P. Y., Wang, W. X., 2011. Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Mar. Pollut. Bull. 62 (5), 1140-1146, http://dx.doi.org/10.1016/j.marpolbul.2011.02.043.
  • [28] Pattan, J. N., Rao, C. M., Higgs, N. C., Colley, S., Parthiban, G., 1995. Distribution of major, trace and rare-earth elements in Surface sediments of the Wharton Basin, Indian Ocean. Chem. Geol. 121, 631-638.
  • [29] Qiu, Y. W., Yu, K. F., Zhang, G., Wang, W. X., 2011. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. J. Hazard. Mater. 190 (1-3), 631-638, http://dx.doi.org/10.1016/j.jhazmat.2011.03.091.
  • [30] Rath, P., Panda, U. C., Bhatta, D., Sahu, K. C., 2009. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments-A case study: Brahmani and Nandira Rivers, India. J. Hazard. Mater. 163 (2-3), 632-644, http://dx.doi.org/10.1016/j.jhazmat.2008.07.048.
  • [31] Saad, M. A. S., 1996. Heavy metal pollution in coastal Red Sea waters, Jeddah. Mar. Sci. 17, 1-2.
  • [32] Shang, Z., Ren, J., Tao, L., Wang, X., 2015. Assessment of heavy metals in surface sediments from Gansu section of Yellow River, China. Environ. Monit. Assess. 187 (79), 10 pp., http://dx.doi.org/10.1007/s10661-015-4328-6.
  • [33] Srinivasan, M., Swain, G.W., 2007. Managing the use of copper-based antifouling paints. Environ. Manage. 39 (3), 423-441, http://dx.doi.org/10.1007/s00267-005-0030-8.
  • [34] Tang, W., Shan, B., Zhang, H., Mao, Z., 2010. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J. Hazard. Mater. 176 (1-3), 945-951, http://dx.doi.org/10.1016/j.jhazmat.2009.11.131.
  • [35] Tomlinson, D. L., Wilson, J. G., Harris, C. R., Jeffrey, D. W., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresuntersuchungen 33, 566-575, http://dx.doi.org/10.1007/BF02414780.
  • [36] Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232 (1-2), 12-32, http://dx.doi.org/10.1016/j.chemgeo.2006.02.012.
  • [37] Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull. 72, 175-192.
  • [38] USEPA, 1996. Method 3050B Acid Digestion of Sediments, Sludges, and Soils. EPA, 12 pp.
  • [39] Usman, A. R. A., Alkredaa, R. S., Al-Wabel, M. I., 2013. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol. Environ. Saf. 97, 263-270, http://dx.doi.org/10.1016/j.ecoenv.2013.08.009.
  • [40] Varol, M., 2011. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 195, 355-364, http://dx.doi.org/10.1016/j.jhazmat.2011.08.051.
  • [41] Veerasingam, S., Vethamony, P., Mani Murali, R., Fernandes, B., 2015. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrowe ecosystem, west coast of India. Mar. Pollut. Bull. 91 (1), 362-367, http://dx.doi.org/10.1016/j.marpolbul.2014.11.045.
  • [42] Venkatramanan, S., Chung, S. Y., Ramkumar, T., Selvam, S., 2015. Environmental monitoring and assessment of heavy metals in surface sediments at Coleroon River Estuary in Tamil Nadu, India. Environ. Monit. Assess. 187:505 16 pp., http://dx.doi.org/10.1007/s10661-015-4709-x.
  • [43] Williams, N., Block, K. A., 2015. Spatial and vertical distribution of metals in sediment cores from Río Espíritu Santo estuary, Puerto Rico, United States. Mar. Pollut. Bull. 100 (1), 445-452, http://dx.doi.org/10.1016/j.marpolbul.2015.08.007.
  • [44] Zalewska, T., Woroń, J., Danowska, B., Suplińska, M., 2015. Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57 (1), 32-43, http://dx.doi.org/10.1016/j.oceano.2014.06.003.
  • [45] Zhang, J., Liu, C. L., 2002. Riverine composition and estuarine geochemistry of particulate metals in China — weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci. 54 (4), 1051-1070, http://dx.doi.org/10.1006/ecss.2001.0879.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31dd705a-5069-4a49-b1b4-a0c92b7ee6ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.