Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Massive open online courses, MOOCs, are a recent phenomenon that has achieved a tremendous media attention in the online education world. Certainly, the MOOCs have brought interest among the learners (given the number of enrolled learners in these courses). Nevertheless, the rate of dropout in MOOCs is very important. Indeed, a limited number of the enrolled learners complete their courses. The high dropout rate in MOOCs is perceived by the educator’s community as one of the most important problems. It’s related to diverse aspects, such as the motivation of the learners, their expectations and the lack of social interactions. However, to solve this problem, it is necessary to predict the likelihood of dropout in order to propose an appropriate intervention for learners at-risk of dropping out their courses. In this paper, we present a dropout predictor model based on a neural network algorithm and sentiment analysis feature that used the clickstream log and forum post data. Our model achieved an average AUC (Area under the curve) as high as 90% and the model with the feature of the learner’s sentiments analysis attained average increase in AUC of 0.5%.
Rocznik
Tom
Strony
72--80
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
- Faculty of Science, Mohammed V University in Rabat, Morocco
autor
- ENSIAS, Mohammed V University in Rabat, Morocco
autor
- Information Retrieval and Data Analytics Research Team, ENSIAS, Mohammed V University in Rabat, Morocco
Bibliografia
- [1] A. Watters, “MOOC Mania: Debunking the hype around massive open online courses”, 2013,http://www.thedigitalshift.com/2013/04/featured/got-mooc-massive-open-onlinecourses-are-poised-to-change-the-face-of-education/. Accessed on: 2021-02-06.
- [2] K. Jordan,“Initial trends in enrolment and completion of massive open online courses”, The International Review of Research in Open and Distributed Learning, vol. 15, no. 1, 2014, DOI: 10.19173/irrodl.v15i1.1651.
- [3] R. Meyer, “What It’s Like to Teach a MOOC (and What the Heck’s a MOOC?)”, 2012, https://www.theatlantic.com/technology/archive/2012/07/what-its-like-to-teach-amooc-and-what-the-hecks-a-mooc/260000/.Accessed on: 2021-02-06.
- [4] D. F. O. Onah, J. Sinclair and R. Boyatt, “Dropout rates of massive open online courses: behavioural patterns”. In: L. Gómez Chova, A. López Martínez and I. Candel Torres (eds.), EDULEARN14 Proceedings, 2014, 5825–5834.
- [5] Y. Belanger and J. Thornton, “Bioelectricity: A Quantitative Approach. Duke University’s First MOOC”, 2013, https://dukespace.lib.duke.edu/dspace/handle/10161/6216. Accessed on: 2021-02-06.
- [6] C. Gütl, R. H. Rizzardini, V. Chang and M. Morales, “Attrition in MOOC: Lessons Learned from Drop-Out Students”. In: L. Uden, J. Sinclair,Y.-H. Tao and D. Liberona (eds.), Learning Technology for Education in Cloud. MOOC and Big Data, 2014, 37–48,DOI: 10.1007/978-3-319-10671-7_4.
- [7] P. Hill, “Emerging Student Patterns in MOOCs: A (Revised) Graphical View”, 2013, https://eliterate.us/emerging-student-patterns-inmoocs-a-revised-graphical-view/. Accessed on: 2021-02-06.
- [8] H. Khalil and M. Ebner, “MOOCs Completion Rates and Possible Methods to Improve Retention - A Literature Review”. In: Proceedings of World Conference on Educational Multimedia,Hypermedia and Telecommunications, 2014, 1236–1244.
- [9] H. Khalil and M. Ebner, ““How satisfied are you with your MOOC?” - A Research Study on Interaction in Huge Online Courses”. In: J. Herrington, A. Couros & V. Irvine (Eds.), Proceedings of EdMedia + Innovate Learning, 2013, 830–839.
- [10] R. F. Kizilcec, C. Piech and E. Schneider, “Deconstructing disengagement: analyzing learner subpopulations in massive open online courses”. In: Proceedings of the third international conference on learning analytics and knowledge, 2013, 170–179.
- [11] P. Hill, “Some validation of MOOC student patterns graphic”, 2013, https://eliterate.us/validation-mooc-student-patterns-graphic/. Accessed on: 2021-02-06.
- [12] A. Bakki, L. Oubahssi, C. Cherkaoui and S. George, “cMOOC: How to Assist Teachers in Integrating Motivational Aspects in Pedagogical Scenarios?”. In: T. Brinda, N. Mavengere, I. Haukijärvi, C. Lewin and D. Passey (eds.),Stakeholders and Information Technology in Education, 2016, 72–81,DOI: 10.1007/978-3-319-54687-2_7.
- [13] A. Bakki, L. Oubahssi, C. Cherkaoui and S. George, “Motivation and Engagement in MOOCs: How to Increase Learning Motivation by Adapting Pedagogical Scenarios?”. In: . Conole, T. Klobučar, C. Rensing, J. Konert and E. Lavoué (eds.), Design for Teaching and Learning in a Networked World, 2015, 556–559, DOI: 10.1007/978-3-319-24258-3_58.
- [14] J. J. Williams, “Improving learning in MOOCs with Cognitive Science”. In: International Conference on Artificial Intelligence in Education 2013 Workshops Proceedings, 2013.
- [15] S. Downes, “Creating the Connectivist Course”, 2012, https://halfanhour.blogspot.com/2012/01/creating-connectivist-course.html. Accessed on: 2021-02-06.
- [16] F. Brouns, J. Mota, L. Morgado, D. Jansen, S. Fano, A. Silva and A. Teixeira, “A Networked Learning Framework for Effective MOOC Design: The ECO Project Approach”. In: Doing Things Better – Doing Better Things – EDENRW8 Conference Proceedings, 2014, 161–172.
- [17] S. Deterding, D. Dixon, R. Khaled and L. Nacke, “From game design elements to gamefulness: defining “gamification””. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, 2011, 9–15, DOI: 10.1145/2181037.2181040.
- [18] M. Wen, D. Yang and C. P. Rosé,“Sentiment Analysis in MOOC Discussion Forums: What does it tell us?”. In: Proceedings of the 7th International Conference on Educational Data Mining, 2014, 130–137.
- [19] T. Sinha, N. Li, P. Jermann and P. Dillenbourg, “Capturing “attrition intensifying” structural traits from didactic interaction sequences of MOOC learners”. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, 2014, 42–49, DOI: 10.3115/v1/W14-4108.
- [20] M. Vitiello, S. Walk, R. Rizzardini, D. Helic and C. Gütl, “Classifying students to improve MOOC dropout rates”, Proceedings of the European Stakeholder Summit on experiences and best practices in and around MOOCs (EMOOCS 2016), 2016, 501–508.
- [21] S. Crossley, L. Paquette, M. Dascalu, D. S. McNamara and R. S. Baker, “Combining click-stream ata with NLP tools to better understand MOOC completion”. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 2016, 6–14, OI: 10.1145/2883851.2883931.
- [22] M. Kloft, F. Stiehler, Z. Zheng and N. Pinkwart, “Predicting MOOC Dropout over Weeks Using achine Learning Methods”. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, 2014, 60–65, DOI: 10.3115/v1/W14-4111.
- [23] J. He, J. Bailey, B. I. P. Rubinstein and R. Zhang, “Identifying at-risk students in massive open online courses”. In: Proceedings of the TwentyNinth AAAI Conference on Artificial Intelligence, 2015, 1749–1755.
- [24] T.-Y. Liu and X. Li, “Finding out Reasons for Low Completion in MOOC Environment: An Explicable Approach Using Hybrid Data Mining Methods”, Proceedings of 2017 International Conference on Modern Education and Information Technology (MEIT 2017), 2017, DOI: 10.12783/dtssehs/meit2017/12893.
- [25] D. S. Chaplot, E. Rhim and J. Kim, “Predicting Student Attrition in MOOCs using Sentiment nalysis and Neural Networks”. In: Proceedings of the Workshops at the 17th International Conference on Artificial Intelligence in Education AIED 2015, vol. 3, 2015, 7–12.
- [26] W. Wang, H. Yu and C. Miao, “Deep Model for Dropout Prediction in MOOCs”. In: Proceedings of the 2nd International Conference on Crowd Science and Engineering, 2017, 26–32, DOI: 10.1145/3126973.3126990.
- [27] G. Balakrishnan, “Predicting Student Retention in Massive Open Online Courses using Hidden Markov Models”, Technical Report, 2013, https://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-109.html. Accessed on: 2021-02-06.
- [28] S. Boyer and K. Veeramachaneni, “Transfer Learning for Predictive Models in Massive Open Online Courses”. In: C. Conati, N. Heffernan, A. Mitrovic and M. F. Verdejo (eds.), Artificial Intelligence in Education, 2015, 54–63, DOI: 10.1007/978-3-319-19773-9_6.
- [29] C. Taylor, K. Veeramachaneni and U.-M. O’Reilly, “Likely to stop? Predicting Stopout in Massive Open Online Courses”, arXiv:1408.3382 [cs], 2014.
- [30] C. A. Coleman, D. T. Seaton and I. Chuang, “Probabilistic Use Cases: Discovering Behavioral Patterns for Predicting Certification”. In: Proceedings of the Second (2015) ACM Conference on Learning @ Scale, 2015, 141–148, DOI: 10.1145/2724660.2724662.
- [31] S. Jiang, A. Williams, K. Schenke, M. Warschauer and D. O’Dowd, “Predicting MOOC performance with Week 1 Behavior”. In: Proceedings of the 7th International Conference on Educational Data Mining, 2014, 273–275.
- [32] M. Kloft, F. Stiehler, Z. Zheng and N. Pinkwart, “Predicting MOOC Dropout over Weeks Using Machine Learning Methods”. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, 2014, 60–65, DOI: 10.3115/v1/W14-4111.
- [33] W. Xing, X. Chen, J. Stein and M. Marcinkowski, “Temporal predication of dropouts in MOOCs:
- Reaching the low hanging fruit through stacking generalization”, Computers in Human Behavior, vol. 58, 2016, 119–129, DOI: 10.1016/j.chb.2015.12.007.
- [34] F. Dalipi, A. S. Imran and Z. Kastrati, “MOOC dropout prediction using machine learning techniques: Review and research challenges”.In: 2018 IEEE Global Engineering Education onference (EDUCON), 2018, 1007–1014, DOI: 10.1109/EDUCON.2018.8363340.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31da736c-deaa-4525-b514-f3c5ebfbf3be