PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery of vanadium and tungsten from spent selective catalytic reduction catalyst by alkaline pressure leaching

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improving the efficiency of precious metal recovery from spent Selective Catalytic Reduction (SCR) catalyst provides economic benefits and promises sustainable use of resources. Here we demonstrate highly efficient alkaline pressure leaching method for the extraction of vanadium (V) and tungsten (W) from spent SCR catalyst. We analyzed the effects of experimental parameters such as the stirring speed, leaching agent concentration, leaching temperature, liquid-to-solid ratio, and leaching time. The Box-Behnken design of experiments and the response surface methodology have been employed to understand the impact of the leaching parameters and the impact of their interactions on the leaching rate of V and W. The results showed that the leaching agent concentration significantly promoted the recovery of V and W; the influence of the reaction temperature and leaching time moderately increased the leaching rate of the metals. Moreover, the efficiency of the alkaline pressure leaching technique was determined by the interactions between leaching time and reaction temperature, and the relationships between reaction temperature and leaching agent concentration. By using the response surface methodology, the optimal leaching conditions were found that the leaching agent concentration was 4.75 mol-1, the leaching temperature was 190 °C, and the reaction time was 44.5 min, and the predicted values of V and W leaching rates were 95.76% and 98.36%, respectively. Based on the excellent fitting between modeling and experimental results demonstrated in this work, we conclude that our study can shed light on the development of highly efficient and sustainable metal recovery strategies for practical applications.
Rocznik
Strony
407--420
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., wz.
Twórcy
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • ANGELIDIS, T., TOURASANIDIS, E., MARINOU, E., STALIDIS, G., 1995. Selective dissolution of critical metals from diesel and naptha spent hydrodesulphurization catalysts. Resources, conservation and recycling. 13 (3-4), 269-282.
  • BORRA, C. R., BLANPAIN, B., PONTIKES, Y., BINNEMANS, K., VAN Gerven, T., 2016. Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review. Journal of Sustainable Metallurgy. 2 (4), 365-386.
  • CHEN, G., WANG, J., WANG, X., ZHENG, S.-L., Du, H., ZHANG, Y., 2013. An investigation on the kinetics of chromium dissolution from Philippine chromite ore at high oxygen pressure in KOH sub-molten salt solution. Hydrometallurgy. 139, 46-53.
  • FAN, Y., YANG, Y., XIAO, Y., ZHAO, Z., LEI, Y., 2013. Recovery of tellurium from high tellurium-bearing materials by alkaline pressure leaching process: Thermodynamic evaluation and experimental study. Hydrometallurgy. 139, 95-99.
  • GHARBI, A., KENNÉ, J. P., 2000. Production and preventive maintenance rates control for a manufacturing system: an experimental design approach. International journal of production economics. 65 (3), 275-287.
  • GUO, L., SHU, Y., GAO, J., 2012. Present and future development of flue gas control technology of DeNO_X in the world. Energy Procedia. 17, 397-403.
  • HUO, Y., CHANG, Z., LI, W., LIU, S., DONG, B., 2015. Reuse and valorization of vanadium and tungsten from waste V 2 O 5–WO 3/TiO 2 SCR catalyst. Waste and Biomass Valorization. 6 (2), 159-165.
  • KENNÉ, J. P., 1999. Experimental design in production and maintenance control problem of a single machine, single product manufacturing system. International Journal of Production Research. 37 (3), 621-637.
  • KHURI, A. I., MUKHOPADHYAY, S., 2010. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics. 2 (2), 128-149.
  • KIM, J. W., LEE, W. G., HWANG, I. S., LEE, J. Y., HAN, C., 2015. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching. Journal of Industrial and Engineering Chemistry. 28, 73-77.
  • KU, H., JUNG, Y., JO, M., PARK, S., KIM, S., YANG, D., RHEE, K., AN, E.-M., SOHN, J., KWON, K., 2016. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. Journal of hazardous materials. 313, 138-146.
  • LI, H.-Y., FANG, H.-X., WANG, K., ZHOU, W., YANG, Z., YAN, X.-M., GE, W.-S., LI, Q.-W., XIE, B., 2015. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching. Hydrometallurgy. 156, 124-135.
  • LI, M., ZHENG, S., LIU, B., WANG, S., DREISINGER, D., ZHANG, Y., DU, H., ZHANG, Y., 2017. A clean and efficient method for recovery of vanadium from vanadium slag: nonsalt roasting and ammonium carbonate leaching processes. Mineral Processing and Extractive Metallurgy Review. 38 (4), 228-237.
  • LI, M.-T., CHANG, W., GANG, F., LI, C.-X., DENG, Z.-G., LI, X.-B., 2010. Pressure acid leaching of black shale for extraction of vanadium. Transactions of Nonferrous Metals Society of China. 20, s112-s117.
  • LI, Q., LIU, Z., LIU, Q., 2014. Kinetics of Vanadium Leaching from a Spent Industrial V2O5/TiO2 Catalyst by Sulfuric Acid. Industrial & Engineering Chemistry Research. 53 (8), 2956-2962.
  • LIU, Z. X., YIN, Z. L., XIONG, S. F., CHEN, Y. G., CHEN, Q. Y., 2014. Leaching and kinetic modeling of calcareous bornite in ammonia ammonium sulfate solution with sodium persulfate. Hydrometallurgy. 144, 86-90.
  • MAKADIA, A. J., NANAVATI, J., 2013. Optimisation of machining parameters for turning operations based on response surface methodology. Measurement. 46 (4), 1521-1529.
  • MARAFI, M., STANISLAUS, A., 2008. Spent hydroprocessing catalyst management: A review: Part II. Advances in metal recovery and safe disposal methods. Resources, Conservation and Recycling. 53 (1), 1-26.
  • MIRAZIMI, S., RASHCHI, F., SABA, M., 2013. Vanadium removal from roasted LD converter slag: optimization of parameters by response surface methodology (RSM). Separation and Purification Technology. 116, 175-183.
  • MUTHUKUMAR, M., MOHAN, D., RAJENDRAN, M., 2003. Optimization of mix proportions of mineral aggregates using Box Behnken design of experiments. Cement and Concrete Composites. 25 (7), 751-758.
  • MYERS, R. H., MONTGOMERY, D. C., ANDERSON-Cook, C. M., 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons: 2016.
  • OOI, T. Y., YONG, E. L., DIN, M. F. M., REZANIA, S., AMINUDIN, E., CHELLIAPAN, S., RAHMAN, A. A., PARK, J., 2018. Optimization of aluminium recovery from water treatment sludge using Response Surface Methodology. Journal of environmental management. 228, 13-19.
  • PEREZ, J. P. H., FOLENS, K., LEUS, K., VANHAECKE, F., VAN DER Voort, P., DU LAING, G., 2019. Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation and Recycling. 142, 177-188.
  • QIU, S., WEI, C., LI, M., ZHOU, X., LI, C., DENG, Z., 2011. Dissolution kinetics of vanadium trioxide at high pressure in sodium hydroxide–oxygen systems. Hydrometallurgy. 105 (3-4), 350-354.
  • SHANG, X., HU, G., HE, C., ZHAO, J., ZHANG, F., XU, Y., ZHANG, Y., LI, J., CHEN, J., 2012. Regeneration of full- scale commercial honeycomb monolith catalyst (V2O5–WO3/TiO2) used in coal-fired power plant. Journal of Industrial and Engineering Chemistry. 18 (1), 513-519.
  • SHI, S., LV, J., LIU, Q., NAN, F., FENG, J., XIE, S., 2018. Optimized preparation of Phragmites australis activated carbon using the Box-Behnken method and desirability function to remove hydroquinone. Ecotoxicology and environmental safety. 165, 411-422.
  • SKELLAND, A., LEE, J. M., 1981. Drop size and continuous-phase mass transfer in agitated vessels. AIChE Journal. 27 (1), 99-111.
  • SOLANKI, A. B., PARIKH, J. R., PARIKH, R. H., 2007. Formulation and optimization of piroxicam proniosomes by 3- factor, 3-level Box-Behnken design. AAPS PharmSciTech. 8 (4), 43.
  • TEFAS, L. R., TOMUŢĂ, I., ACHIM, M., VLASE, L., 2015. Development and optimization of quercetin-loaded PLGA nanoparticles by experimental design. Clujul Medical. 88 (2), 214.
  • TEKINDAL, M. A., BAYRAK, H., OZKAYA, B., GENÇ, Y., 2012. Box-Behnken experimental design in factorial experiments: The importance of bread for nutrition and health. Turkish Journal of Field Crops. 17 (2), 115-123.
  • TUNCUK, A., CIFTCI, H., AKCIL, A., OGNYANOVA, A., VEGLIÒ, F., 2009. Experimental design and process analysis for acidic leaching of metal-rich glass wastes. Waste Management & Research. 28 (5), 445-454.
  • WHITE, C. D., WILLIS, B. J., NARAYANAN, K., DUTTON, S. P., 2001. Identifying and estimating significant geologic parameters with experimental design. SPE Journal. 6 (03), 311-324.
  • YANG, J., MA, H., YAMAMOTO, Y., YU, J., XU, G., ZHANG, Z., SUZUKI, Y., 2013. SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces. Chemical engineering journal. 230, 513-521.
  • ZHOU, X., WEI, C., XIA, W., LI, M., LI, C., DENG, Z., XU, H., 2012. Dissolution kinetics and thermodynamic analysis of vanadium trioxide during pressure oxidation. Rare Metals. 31 (3), 296-302.
  • ZI, W., PENG, J., ZHANG, X., ZHANG, L., LIU, J., 2013. Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers. 44 (4), 678-685.
Uwagi
This work was supported by National Water Pollution Control and Management Technology Major Projects (2014ZX07201-009-04), and “123 Project” of Environmental Research and Education in Liaoning Province (CEPF2013-123-1-4).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31d9943b-239c-4bb7-a120-8d08fc51cb71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.