PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient Phantom Source Widening

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a highly efficient filter structure to create power-complementary filter pairs for phantom source widening. It either introduces frequency-dependent phase or amplitude differences in a pair of loudspeaker signals. We evaluate how the perceptual effect is influenced by off-center listening positions in a standard ±30o loudspeaker setup. The evaluation of the phantom source widening effect is based on measurements of the inter-aural cross-correlation coefficient (IACC), which is justified by its pronounced correlation to the perceived phantom source width in prior listening test results.
Rocznik
Strony
27--37
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz Inffeldgasse 10/3, 8010 Graz, Austria
autor
  • Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz Inffeldgasse 10/3, 8010 Graz, Austria
Bibliografia
  • 1. Blau M. (2002), Difference limens for measures of apparent source width, [in:] Forum Acusticum, Sevilla, Spain.
  • 2. Blauert J., Lindemann W. (1986), Spatial mapping of intracranial auditory events for various degrees of inter-aural coherence, The Journal of the Acoustical Society of America, 79, 806–813.
  • 3. Bouéri M., Kyriakakis C. (2004), Audio signal decor-relation based on a critical band approach, [in:] Preprint 6291, 117th Conv. Audio Eng. Soc., San Francisco.
  • 4. Frank M., Marentakis G., and Sontacchi A. (2011), A simple technical measure for the perceived source width, [in:] Fortschritte der Akustik, DA GA, Düsseldorf.
  • 5. Gerzon M. A. (1992), Signal processing for simulating realistic stereo images, [in:] Preprint 3423, 93rd Conv. Audio Eng. Soc., San Francisco.
  • 6. Gerzon M. A. (1993), Stereophonic signal processor generating pseudo stereo signals, Patent, WO 93/25055.
  • 7. Hidaka T., Beranek L. L., Okano T. (1995), Interaural cross-correlation, lateral fraction, and low- and high-frequency sound levels as measures of acoustical quality in concert halls, The Journal of the Acoustical Society of America, 98, 2, 988–1007.
  • 8. ISO (2009), ISO 3382-1:2009: Acoustics – measurement of room acoustic parameters – part 1: Performance spaces.
  • 9. Karjalainen M., Piirilä E., Järvinen A., Huopaniemi J. (1999), Comparison of loudspeaker equalization methods based on DSP techniques, J. Audio Eng. Soc., 47, 1/2, 14–31.
  • 10. Kendall G. S. (1995), The decorrelation of audio signals and its impact on spatial imagery, Computer Music J., 19, 4, 71–87.
  • 11. Kin M.J., Plaskota P. (2011), Comparison of sound attributes of multichannel and mixed-down stereo recordings, Archives of Acoustics, 36, 2, 333–345.
  • 12. Laitinen M.-V., Philajamäki T., Erkut C., Pulkki V. (2012), Parametric time-frequency representation of spatial sound in virtual worlds, ACM Trans. Appl. Percept., 3, 2, 8:1–20.
  • 13. Ono K., Pulkki V., Karjalainen M. (2001), Binaural modeling of multiple sound source perception: Method¬ology and coloration experiments, [in:] Preprint 5446, 111th Conv. Audio Eng. Soc., New York.
  • 14. Oppenheim A. V., Schafer R. W., Buck J. R. (1999), Discrete- Time Signal Processing, Prentice Hall, New Jersey.
  • 15. Orban R. (1970a), A rational technique for synthesizing pseudo-stereo from monophonic sources, J. Audio Eng. Soc., 18, 2, 157–164.
  • 16. Orban R. (1970b), Letters to the editor: Further thoughts on “a rational technique for synthesizing pseudo-stereo from monophonic sources”, J. Audio Eng. Soc., 18, 4, 443–444.
  • 17. Plewa M., Kleczkowski P. (2011), Choosing and con-figuring a stereo microphone technique based on localisation curves, Archives of Acoustics, 36, 2, 347–363.
  • 18. Potard G., Burnett I. (2004), Decorrelation techniques for the rendering of apparent sound source width in 3D audio displays, [in:] Proc. DAFx-04, 280–284, Napoli.
  • 19. Potard G. (2006), 3D-audio object oriented coding, PhD thesis, University of Wollongong.
  • 20. Pulkki V. (1997), Virtual sound source positioning using vector base amplitude panning, J. Audio Eng. Soc., 45, 6, 456–466.
  • 21. Schröder M. R.(1958), An artificial stereophonic effect obtained from a single audio signal, J. Audio Eng. Soc., 6, 2, 74–79.
  • 22. Szczerba M., Oomen W., Therssen D. (2011), Parametric audio based decoder and music synthesizer for mobile applications, Archives of Acoustics, 36, 2, 461– 478.
  • 23. Thurstone L. L. (1994), A law of comparative judgment, Psychological Review, 101, 2, 266–270.
  • 24. Wendt K. (1963), Das Richtungshören bei der Űberlagerung zweier Schallfelder bei Intensitäts- und Laufzeitstereophonie, PhD thesis, RWTH Aachen.
  • 25. Zotter F., Frank M., Marentakis G., Sontacchi A. (2011), Phantom source widening with deterministic frequency dependent time-delays, [in:] DAFx-11 Proceedings, 307–312, Paris.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31d5f2bf-1ea8-40a6-bea9-20c9c76ce23a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.