PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Reconstruction of Funnel Flow Boundary Using Automatic Point Set Extraction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an automatic point set extraction method for reconstructing 3D tomography images of funnel flow boundary. The method clearly shows the boundary between the funnel flow and stagnant zone during silo discharging process. After adjusting the contrast of the original X-ray CT image and applying filter function, the intensity profile of the image shows a high jump corresponding to the local flow boundary position at a specific height of the silo model. By extracting and connecting those jump points gave us a boundary line of the funnel flow from the stagnant. The outcome of segmented image opens a door for analysing further about funnel flow in 3D images.
Twórcy
autor
  • Institute of Applied Computer Science, Lodz University of Technology
autor
  • Institute of Applied Computer Science, Lodz University of Technology
autor
  • Institute of Applied Computer Science, Lodz University of Technology
Bibliografia
  • [1] Babout, L., Grudzien, K., Maire, E., Withers, P.J. (2013). Influence of wall roughness and packing density on stagnant zone formation during funnel flow discharge from a silo: An X-ray imaging study. Chemical Engineering Science, 97, 210-224
  • [2] Drescher, A., Ferjani, M. (2004). Revised model for plug/funnel flow in bins. Powder Technology, 141(1), 44-54
  • [3] Grudzień, K., Chaniecki, Z., Romanowski, A., Niedostatkiewicz, M., Sankowski, D. (2012). ECT image analysis methods for shear zone measurements during silo discharging process. Chinese Journal of Chemical Engineering, 20(2), 337-345
  • [4] Grudzień, K., Niedostatkiewicz, M., Adrien, J., Tejchman, J., Maire, E. (2011). Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chemical Engineering and Processing: Process Intensification, 50(1), 59-67
  • [5] Haralick, R.M., Lee, J.S. (1990). Context dependent edge detection and evaluation. Pattern Recognition, 23(1), 1-19
  • [6] Khambekar, J., Roger, A., Barnum, A. (2013). Jenike Johanson PRB Coal-Material Handling Challenges and Solutions, Power Engineering, 117/3
  • [7] Langston, P.A., Tüzün, U., Heyes, D.M. (1995). Discrete element simulation of internal stress and flow fields in funnel flow hoppers. Powder Technology, 85(2), 153-169
  • [8] Lopez-Molina, C., De Baets, B., Bustince, H. (2013). Quantitative error measures for edge detection. Pattern Recognition, 46(4), 1125-1139
  • [9] McDonald, S.A., Schneider, L.C.R., Cocks, A.C.F., Withers, P.J. (2006). Particle movement during the deep penetration of a granular material studied by X-ray microtomography. Scripta materialia, 54(2), 191-196
  • [10] Pratt, W.K. (2001). Digital image processing 3, Wiley-Interscience
  • [11] Ristow, G.H. (2000). Pattern formation in granular materials (No. 164). Springer Science & Business Media
  • [12] Russ, J.C. (2006). The image processing handbook. CRC press
  • [13] Schörner, K. (2012). Development of Methods for Scatter Artifact Correction in Industrial X-ray Cone-beam Computed Tomography (Doctoral dissertation, Technische Universität München)
  • [14] Schulze, D. (2008). Powders and bulk solids. Behaviour, Characterization, Storage and Flow. Springer.
  • [15] Siogkas, G. (2013). Visual Media Processing Using Matlab Beginner’s Guide. Packt Publishing Ltd. 124-128
  • [16] Umbaugh, S.E. (2010). Digital image processing and analysis: human and computer vision applications with CVIPtools. CRC press
  • [17] van Vliet, L.J., Young, I.T., Beckers, G.L. (1989). A nonlinear Laplace operator as edge detector in noisy images. Computer Vision, Graphics, and Image Processing, 45(2), 167-195
  • [18] Waktola, S., Babout, L., Grudzien, K. (2014). 3D Segmentation of Funnel Flow Boundary During Silo Emptying. Image Processing & Communications, 19(2-3), 141-149
  • [19] Wevers, M., Kerckhofs, G., Pyka, G., Herremans, E., Van Ende, A., Hendrickx, R., Wilderjans, E. (2012). X-ray computed tomography for nondestructive testing. In Proceedings iCT 2012, International Conference on Industrial Computed Tomography (pp. 1-10)
  • [20] Ziou, D., Tabbone, S. (1998). Edge detection techniques-an overview. Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 8, 537-559
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31d4cbc8-d5b9-4604-83a3-eddb321203a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.