PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and theoretical research on large-diameter rock-socketed pile embedded depth

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical formula for large-diameter rock-socket depth is developed to support pail embedding in a large bridge pile foundation project. There is a horizontal additional stress concentration at the place where the soil around the rock-socketed pile meets the soil layer under the horizontal load. When the rock-socketed tip stress and bending moment of the pile are relatively small, the pile shows favourable embedment effect and the pile foundation can be considered safe. The function curve of soil resistance around the pile under the action of horizontal force was obtained by finite element analysis. The force characteristics reveal the depth of the largediameter rock-socketed pile under the horizontal load. As the rock-socketed pile rotates under the action of horizontal force, the rock mass resistance around the pile changes according to the cosine. The distribution of pileside soil resistance is proportional to the displacement and distributed according to the sine. A comprehensive correction coefficient of pile shaft resistance β is introduced to deduce the theoretical formula of the depth hr of the large-diameter rock-socketed pile embedded in the bedrock. It is verified through both experiments and numerical analysis.
Rocznik
Strony
537--550
Opis fizyczny
Bibliogr. 22 poz., il., tab.
Twórcy
autor
  • School of Transportation Engineering, Shenyang Jianzhu University, Shenyang, China
autor
  • School of Transportation Engineering, Shenyang Jianzhu University, Shenyang, China
autor
  • School of Transportation Engineering, Shenyang Jianzhu University, Shenyang, China
autor
  • School of Transportation Engineering, Shenyang Jianzhu University, Shenyang, China
Bibliografia
  • [1] C. H. Ghang, Q. H. Gao, C. Lou, “Model experimental study of rock rocketed pile in slope strata subjected to horizontal loading”, Journal of Engineering Geology 27(2): 286-293, 2019.
  • [2] S. F. Guo, S. W. Qi, X. X. Li, Y. Zou, S. S. Zhang, “Strength and deformation characteristics of rock sample with discontinuities under numercial uniaxial compression simulation tests”, Journal of Engineering Geology 24(5): 891-898, 2016.
  • [3] Z. Y. Liu, X. L. Jiang, H. Lin, “Numerical analysis for shear characteristic of soft structure plane with pile reinforcement”, Journal of Central South University (Science and Technology) 42(5): 1461-1466, 2011.
  • [4] D. W. Wang, C. M. Wang, S. H. Kuang, “Selection and optimization of the site of bridge piled foundation on the layered rock slope”, Journal of Engineering Geology 24: 861-867, 2016.
  • [5] H. J. Wang, D. A. Liu, Z. Q. Huang, G. X. Yuan, X. C. Li, J. R. Niu, Z. J. Zhao, X. S. Shi, “Mechanical properties and brittleness evaluation of layered shale rock”, Journal of Engineering Geology 25(6): 1414-1423, 2017.
  • [6] W. D. Wang, J. B. Wu, S. B. Nie, “Field loading tests on large-diameter rock-socketed bored piles of Wuhan Greenland Center Tower”, Chinese Journal of Geotechnical Engineering 37(11): 1945-1954, 2015.
  • [7] J. P. Jiang, G. Y. Gao, Y. S. Zhang, “Strengthening effect of total pile lateral friction by improving rock or soil strength at pile tip”, Rock and Soil Mechanics 30(9): 2609-2615, 2009.
  • [8] C. Z. Gong, W. M. Gong, W. M. He, G. L. Dia, “Influence of Hole Side Roughness on Bearing Characteristic of Deep Rock-socketed Pile”, China Journal of Highway and Transport 24(2): 56-61, 2011.
  • [9] M. H. Zhao, R. Y. Xia, P. B. Yin, C. W. Yang, Z. J. Xu, “Load transfer mechanism of socketed piles considering shear dilation effects of soft rock”, Chinese Journal of Geotechnical Engineering 36(6): 1005-1011, 2014.
  • [10] H. F. Xing, M. H. Meng, W. Y. He, G. B. Ye, Z. K. Liu, “Distribution of shaft resistance of rock-socketed piles based on mechanical properties of pile-rock interface”, Chinese Journal of Geotechnical Engineering 34(12):2220-2227, 2012.
  • [11] H. Mouzannar, M. Bost, M. Leroux, D. Virely, “Experimental study of the shear strength of bonded concreterock interfaces: surface morphology and scale effect,” Rock. Mech. Rock. Eng., vol. 20, no. 1, pp. 1-25, Jun. 2017.
  • [12] H. M. Tian, W. Z. Chen, D. S. Yang, “Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints”, Rock Mechanics and Rock Engineering 2017(1):1-25, 2015.
  • [13] C. Liu, Q. Hu, Y. Wang, S. M. Zhang, “In-Plane Stability of Concrete-Filled Steel Tubular Parabolic Truss Arches”, International Journal of Steel Structures 18(4): 1-12, 2018.
  • [14] A. Kilic, E. Yasar, A. G. Celik, “Effect of grout properties on the pull-out load capacity of fully grouted rock bolt”, Tunneling and Underground Space Technology 17(4):355-362, 2002.
  • [15] Y. Geng, G. Ranzi, Y. T. Wang, Y. Y. Wang, “Out-of-plane creep buckling analysis on slender concrete-filled steel tubular arches”, Journal of Constructional Steel Research 140: 174-190, 2018.
  • [16] J. P. Seidel, C. M. Haberfield, “A theoretical model for rock joints subjected to constant normal stiffness direct shear”, International Journal of Rock Mechanics and Mining Sciences 39(5):539-553, 2002.
  • [17] H. S. Zhang, Y. Y. Wang, “Structural mechanics analysis on coexistent cable support system during system transformation from cable-stayed to suspension”, China Civil Engineering Journal 51(10): 88-96, 2018.
  • [18] S. Hoonil, J. Sangseom, C. Chunwhan, “Shear load transfer for rock-rocketed drilled shafts based on borehole roughness and geological strength index”, International Journal of Rock Mechanics and Mining Sciences 45:848-861, 2008.
  • [19] C. Liu, Y. Wang, X. Wu, S. Zhang, “In-Plane Stability of Fixed Concrete-Filled Steel Tubular Parabolic Arches under Combined Bending and Compression”, Journal of Bridge Engineering 22(2): 04016116.1-04016116.15, 2016.
  • [20] X. F. Gu, C. M. Haberfield, “Laboratory investigation of shaft resistance for piles socketed in basalt”, International Journal of Rock Mechanics and Mining Sciences 41(3): 465-471, 2004.
  • [21] L. H. Han, T. M. Mu, F. C. Wang, B. K. Fan, W. Li, J. Liang, C. Hou, “Design theory of CFST (concrete-filled steel tubular) mixed structures and its applications in bridge engineering”, China Civil Engineering Journal 53(5): 1-24, 2020.
  • [22] M. G. Zertsalov, D. S. Konyukhov, “Analysis of piles in rock”, Soil Mechanics and Foundation Engineering 44(1): 9-14, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31d2b90a-e813-4412-8de3-f1b6c8003c3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.