PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An overview of SPH simulation and experimental investigation of sediment flows in sewer flushing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd symulacji SPH oraz badań eksperymentalnych nad przepływem osadów w spłukiwaniu ścieków
Języki publikacji
EN
Abstrakty
EN
This paper concerns the application of the Smoothed Particle Hydrodynamics (SPH) method for sewer hydraulics with a focus on free-surface flows and sediment flushing. SPH is the most popular mesh-free method and has been widely used in the field of fluid mechanics. Here, the previous studies in the last few years are summarized, which have investigated the application of the relatively new model for the simulation of solid transport, free-surface and multiphase flows.
PL
Niniejszy artykuł dotyczy zastosowania metody cząstek rozmytych (ang. Smoothed Particle Hydrodynamics – SPH) dla hydraulicznych systemów kanalizacyjnych ze szczególnym uwzględnieniem przepływów powierzchni swobodnej oraz spłukiwania osadów. SPH stanowi najbardziej popularną metodę bezsiarkową, powszechnie stosowaną w dziedzinie mechaniki płynów. W niniejszej pracy zestawiono dotychczasowe badania przeprowadzone w ciągu ostatnich kilku lat, które dotyczyły zastosowania stosunkowo nowego modelu do symulacji transportu materiału stałego, przepływów powierzchni swobodnej oraz przepływów wielofazowych.
Rocznik
Strony
17--28
Opis fizyczny
Bibliogr. 57 poz., wz., il.
Twórcy
  • Fluid System Dynamics, Department of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin
  • Fluid System Dynamics, Department of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin
Bibliografia
  • [1] Adami S., Hu X.Y., Adams N.A., A transport-velocity formulation for smoothed particle hydrodynamics, Journal of Computational Physics 241, 2013, 292–307.
  • [2] Amicarelli A., Albano R., Mirauda D., Agate G., Sole A., Guandalini R., A Smoothed Particle Hydrodynamics model for 3D solid body transport in free surface flows, Computers & Fluids 116, 2014, 205–228.
  • [3] Ashley R.M., Crabtree R.W., Sediment origins, deposition and build-up in combined sewer systems, Water Science and Technology, 25 (8) , 1992, 1–12.
  • [4] Ashley R.M., Verbanck M.A., Mechanics of sewer sediment erosion and transport, Journal of Hydraulic Research, 34 (6), 1996, 753–770.
  • [5] Ashley R.M., Bertrand-Krajewski J.L., Hvitved-Jacobsen T., Verbanck M., Solids in Sewers: Characteristics, Effects and Control of Sewer Solids and Associated Pollutants, Joint Committee on Urban Drainage, IWA Publishing, 2004.
  • [6] Aureli F., Dazzi S., Maranzoni A., Mignosa P., Vacondio R., Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure, Advances in Water Resources, 76, 2015, 29–42.
  • [7] Bertrand-Krajewski J.L., Sewer sediment management: some historical aspects of egg-shaped sewer and flushing tanks, Water Science and Technology, 47 (4) , 2003, 109–122.
  • [8] Bertrand-Krajewski J.L., Campisano A., Creaco E., Modica C., Experimental analysis of the Hydrass flushing gate and field validation of flush propagation modelling, Water Science and Technology, 5 (2), IWA Publishing, 2005, 129–137.
  • [9] Bollrich G., Technische Hydromechanik, Band 2. Berlin, VEB Verlag für Bauwesen, 1989.
  • [10] Burger G., Rauch W., Investigating Smoothed Particle Hydrodynamics in Sewer Hydraulics Modeling, 12th International Conference on Urban Drainage, Porto Alegre/Brazil, 11–16 September 2011.
  • [11] Butler D., Tedchanamoorthy S., Payne J.A., Aspects of surface sediments characteristics on an urban catchment in London, Water Science and Technology, 25 (8), 1992, 13–19.
  • [12] Campisano A., Creaco E., Modica C., Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits, Journal of Hydrology, 299, 2004, 324–334.
  • [13] Chebbo G., Laplace D., Bachoc A., Sanchez Y., Le Guennec B., Technical solutions envisaged in managing solids in combined sewer networks, Water Science and Technology, 33 (9) , 1996, 237–244.
  • [14] Chen Z., Zong Z., Liu M.B., Zou L., Li H.T., Shu C., An SPH model for multiphase flows with complex interfaces and large density differences, Journal of Computational Physics, 283, 2015, 169–188.
  • [15] Dao M.H., Xu H., Chan E.S., Tkalich P., Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics, National Hazards and Earth System Sciences 11, 2011, 419–429.
  • [16] De Sutter R., Rushforth P., Tait S., Huygens M., Verhoeven R., Saul A., Validation of existing bed load transport formulas using in-sewer sediment, Journal of Hydraulic Engineering, ASCE, 129 (4), 2003, 325–333.
  • [17] Dettmar J., Beitrag zur Verbesserung der Reinigung von Abwasserkanälen, Ph.D. Thesis, Fakultät für Bauingenieurwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2005.
  • [18] Dominguez J.M., Suzuki T., Altomare C., Crespo A.J., Gomez-Gesteira M., Hybridisation of a wave propagation model (SWASH) and a meshfree particle method (SPH) for real applications, 3rd IAHR Europe Congress, Book of Proceedings, Porto – Portugal, 2014.
  • [19] Engelke P., Gießler M., Eckstädt H., Modelling of Sediment Transport in Sewers, 16th International Conference Transport and Sedimentation of Solid Particles, Rostock, Germany, 18–20 September 2013.
  • [20] Federico I., Marrone S., Colagrossi A., Aristodemo F., Antuono M., Simulating 2D open-channel flows through an SPH model, European Journal of Mechanics B/Fluids 34, 2012, 35–46.
  • [21] Fourtakas G., Rogers B.D., Laurence D.R., Modelling sediment resuspension in industrial tanks using SPH, La Houille Blanche, 2, 2013, 39–45.
  • [22] Gingold R.A., Monaghan J.J., Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, 181, 1977, 375–389.
  • [23] Gomez-Gesteira M., Rogers B.D., Dalrymple R.A., Crespo A.J.C., State-of-the-art of classical SPH for free-surface Flows, Journal of Hydraulic Research 48, Extra Issue, International Association of Hydraulic Engineering and Research, 2010, 6–27.
  • [24] Ghani A.Ab., Sediment transport in sewers, Ph.D. Thesis, University of Newcastle upon Tyne, Department of Civil Engineering, 1993.
  • [25] Graf W.H., Hydraulics of sediment transport, McGraw-Hill Book Company, New York 1971.
  • [26] Liu M.B., Liu G.R., Lam K.Y., Constructing smoothing functions in smoothed particle hydrodynamics with applications, Journal of Computational and Applied Mathematics, 155, 2003, 263–284.
  • [27] Liu G.R., Liu M.B., Smoothed Particle Hydrodynamics: an Overview and Recent Developments, Archives of Computational Methods in Engineering, 17, 2010, 25–76.
  • [28] Lucy L., A numerical approach to the testing of fusion process, Journal of Astronomical, 82, 1977, 1013–1024.
  • [29] Lucas-Aiguier E., Chebbo G., Bertrand-Krajewski J.L., Gagne B., Hedges P., Analysis of the methods for determining the settling characteristics of sewage and stormwater solid, Water Science and Technology, 37 (1), 1998, 53–60.
  • [30] Manenti S., Sibilla S., Gallati M., Agate G., Guandalini R., 3D SPH Simulation of non-Cohesive Sediment Flushing, 6th International SPHERIC workshop, Hamburg, Germany, 2011.
  • [31] Manenti S., Sibilla S., Gallati M., Agate G., Guandalini R., SPH Simulation of Sediment Flushing Induced by a Rapid Water Flow, Journal of Hydraulic Engineering, 138 (3), 2012, 272–284.
  • [32] Maruzewski P., Oger G., Le Touzé D., Biddisccombe J., High performance computing 3D SPH model: Sphere impacting the free-surface of water, 3rd ERCOFTAC SPHERIC workshop on SPH applications, Lausanne, Switzerland, 2008.
  • [33] Meister M., Fleischhacker N., Rauch W., Anwendung von Smoothed Particle Hydrodynamics in der Siedlungswasserwirtschaft, Conference Aqua Urbanica, Innsbruck, Germany, 2015.
  • [34] Michaelbach S., Origin, resuspension and settling characteristics of solids transported in combined Sewage, Water Science and Technology, 31 (7), 1995, 69–76.
  • [35] Mirmohammadi A., Ketabdari M.J., Numerical simulation of wave scouring beneath marine pipeline using smoothed particle hydrodynamics, International Journal of Sediment Research, 26, 2011, 331–342.
  • [36] Mokos A., Multi phase Modelling of Violent Hydrodynamics Using Smoothed Particle Hydrodynamics (SPH) on Graphics Processing Units (GPUs), Ph.D. Thesis, University of Manchester, 2013.
  • [37] Monaghan J.J., Smoothed Particle Hydrodynamics, Annual Review of Astronomy and Astrophysics, 30, 1992, 543–574.
  • [38] Monaghan J.J., Simulating free surface flows with SPH, Journal of Computational Physics, 110, 1994, 399–406.
  • [39] Monaghan J.J., Kocharyan A., SPH simulation of multi-phase flow, Computer Physics Communications, 87, 1995, 225–235.
  • [40] Monaghan J.J., Smoothed particle hydrodynamics, Reports on Progress in Physics, 68, 2005, 1703–59.
  • [41] Pisano W.C., Barsanti J., Joyce J., Sorensen H., Sewer and tank sediment flushing: case studies, US EPA National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Report No. EPA/600/R-98/157, 1998.
  • [42] Pisano W.C., Queiroz C.S., Automated sewer and drainage flushing systems in Cambridge, Massachusetts, Journal of Hydraulic Engineering, 129 (4), 2003, 260–266.
  • [43] Razavitoosi S.L., Ayyoubzadeh S.A., Valizadeh A., Two-phase SPH modelling of waves caused by dam break over a movable bed, International Journal of Sediment Research, 29 (3), 2014, 344–356.
  • [44] Ristenpart E., Sediment properties and their changes in a sewer, Water Science and Technology, 31 (7), 1995, 77–84.
  • [45] Schaffner J., Oberlack M., Kirchheim N., The application of numerical modeling (3-D) for the calculation of flush waves in sewer channels, 6th International Conference on Urban Drainage Modelling, Dresden, Germany, 2004.
  • [46] Schlütter F., Numerical Modelling of Sediment Transport in Combined Sewer Systems, Ph.D. Thesis, Aalborg University, Department of Civil Engineering, 1999.
  • [47] Shao S.D., Simulation of breaking wave by SPH method coupled with k-epsilon model, Journal of Hydraulic Research, 44 (3), 2006, 338–349.
  • [48] Shao S.D., Lo E.Y.M., Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in Water Resources, 26 (7), 2003, 787–800.
  • [49] Sitzenfrei R., Kleidorfer M., Meister M., Burger G., Ulrich C., Mair M., Rauch W., Scientific Computing in Urban Water Management, Computational Engineering, Springer International Publishing, Switzerland, 2014, 173–193.
  • [50] Thamsen P.U., Gerlach S., Höchel K., Remarks on wastewater transport challenges for today and the future, 16th International Conference Transport and Sedimentation of Solid Particles, Rostock, Germany, 18–20 September 2013.
  • [51] Todeschini S., Ciaponi C., Papiri S., Experimental and numerical analysis of erosion and sediment transport of flushing waves, 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008.
  • [52] van Rijn L.C., Sediment transport, part I: bed load transport, Journal of Hydraulic Engineering, 110 (10), American Society of Civil Engineers, Reston, VA, USA, 1984, 1431–1456.
  • [53] van Rijn L.C., Sediment transport, part II: suspended load transport, Journal of Hydraulic Engineering, 110 (11), American Society of Civil Engineers, Reston, VA, USA, 1984, 1613–1641.
  • [54] Vaughan G.L., Simulating Breaking Waves Using Smoothed Particle Hydrodynamics, Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 2005.
  • [55] Verbanck M., Sewer Sediment and its relation with the quality characteristics of combined sewer overflows, Proceedings of the 2nd Wageningen Conference, 1989, 11.
  • [56] Vetsch D., Numerical Simulation of Sediment Transport with Meshfree Methods, Ph.D. Thesis, Mitteilungen 219, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) der Eidgenössischen Technischen Hochschule Zürich, 2012.
  • [57] Yang C.T., Unit Stream Power and Sediment Transport, Journal of the Hydraulics Division, 98 (10), 1972, 1805–1826.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31cade46-0c3f-47ef-9f1d-639a9a9d710d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.