PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Shape and Geometric Dimension Analysis of Polymer Fuel Tanks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
3D optical scanning method, is employed to digital shape and geometric dimension analysis of fuel tanks. The following paper presents the application possibilities of the optical 3D measurement method for measuring and archiving dimensions of geometrically complex parts, on the example of a passenger car fuel tank in local company. Based on the conducted measurements, for a specific type and size of the population of fuel tanks, proposed model that classifies the geometric accuracy of the tanks produced in the production line. For the analysis and data processing different informatics techniques have been used. The main objective of theirs was to identify the possibility of implementing the system for automation of the measurement to the production line. The measurements were implementation at local company - a manufacturer of polymer tanks in the automotive industry. For most of the measuring points, the mean value of the measuring deviations ranged from -1 mm to +1 mm. The mean values of the standard deviations are presented for a representative deviation of the X dimension of 0.1; 5; 10; 15 and 20 mm were respectively: 0.014; 0.150; 0.172; 0.289; 0.340 mm. The dimensional shape assessment of the manufactured tanks is extremely important from the point of view of the automation of this task in the production line. The optimization of the measurement of tanks carried out in laboratory conditions was implemented on the production line. The main task of optical scanning for the assessment of dimensional conformity has not been used so far in factory. This is due not only to the cost of such systems, but also to certain limitations that have been resolved thanks to laboratory tests. The obtained results of the metrological inspection make it possible to identify significant dimensional and shape deviations of automatically manufactured tanks. The proposed use of artificial neural networks allows the production with a high quality of tanks accuracy with the minimum the number of scanned tanks in the production line. The paper also presents the possibilities of the computer software to analyze the deviations of geometrically very complex parts.
Twórcy
autor
  • Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Institute of Computer Science, Electrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. Józwik J., Dziedzic K., Barszcz M., Pashechko M. Analysis and Comparative Assessment of Basic Tribological Properties of Selected Polymer Composites. Materials. 2020;13:1–24.
  • 2. Chen B., Wang J., Yan F. Friction and Wear Behaviors of Several Polymers Sliding Against GCr15 and 316 Steel Under the Lubrication of Sea Water. Tribology Letters. 2011;42:17–25.
  • 3. Borba N., Blaga L., Dos Santos J., Amancio-Filho S. Direct-Friction Riveting of polymer composite laminates for aircraft applications. Materials Letters. 2018;215:31–34.
  • 4. Pashechko M., Dziedzic K., Jozwik J. Analysis of Wear Resistance of Borided Steel C45. Materials. 2020;13(23):5529.
  • 5. Domagała I., Przystupa K., Firlej M., Pieniak D., Niewczas A., Biedziak B. Bending Behaviour of Polymeric Materials Used on Biomechanics Orthodontic Appliances. Materials. 2020;13(23):5579.
  • 6. Li A., Zhang J., Zhang F., Li L., Zhu S., Yang, Y. Effects of fiber and matrix properties on the compression strength of carbon fiber reinforced polymer composites. New Carbon Materials. 2020;35;752–761.
  • 7. Friedrich K. Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research. 2018;1:3–39.
  • 8. Kurdi A., Chang L. Recent Advances in High Performance Polymers-Tribological Aspects. Lubricants. 2019;7:2.
  • 9. Farfan-Cabrera L.I., Tapia-Gaspar M., Pérez- González, J. Tribology of Polymer Matrix Composites Within the Automotive Industry, Materials Science and Materials Engineering. Elsevier. 2021.
  • 10. Sansoni G., Trebeschi M., Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors. 2009;9:568–601.
  • 11. Ruszniak P., Józwik J., Dziedzic K., Ostrowski D. Shearing strength test of orthopaedic titanium alloy screw produced in the process of 3D printing technology. Advances in Science and Technology Research Journal. 2017;11:128–137.
  • 12. Lazarević D., Nedić B., Jović S., Šarkoćević Ž., Blagojević M. Optical inspection of cutting parts by 3D scanning. Physica A: Statistical Mechanics and its Applications. 2019;531:121583.
  • 13. Park S.C., Chang M. Reverse engineering with a structured light system. Computers & Industrial Engineering. 2009;57(4):1377–1384.
  • 14. Wiesche S. Industrial thermoforming simulation of automotive fuel tanks. Applied Thermal Engineering. 2004;24:2391–2409.
  • 15. Knyva V., Knyva M. Influence of 3D scanning data scattering to volume measurement of hori-zontal fuel tanks. Elektronika ir Elektrotechika. 2014;20(5):72–75.
  • 16. Jozwik J., Piesko P., Krajewski G. Evaluation of QC10 Ballbar diagnostics method for CNC machine. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2010;3:10–20.
  • 17. Józwik J., Ostrowski D., Milczarczyk R., Krolczyk G.M. Analysis of relation between the 3D printer laser beam power and the surface morphology properties in Ti-6Al–4V titanium alloy parts. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. 2018;40:1–10.
  • 18. Parry E.J., Best J.M., Banks C.E. Three-dimensional (3D) scanning and additive manufacturing (AM) allows the fabrication of customized crutch grips. Materials Today Communications. 2020;25:101225.
  • 19. Xu J., Xi N., Zhang C., Shi Q., Gregory J. Real-time 3D shape inspection system of automotive parts based on structured light pattern. Optics & Laser Technology. 2011;43:1–8.
  • 20. Semotiuk L., Józwik J., Kuric I. Measurement uncertainty analysis of different CNC machine tools measurement systems. Advances in Science and Technology Research Journal. 2013;7(19):41–47.
  • 21. Börold A., Teucke M., Rust J., Freitag M., Recognition of car parts in automotive supply chains by combining synthetically generated training data with classical and deep learning based image processing. Procedia CIRP. 53rd CIRP Conference on Manufacturing Systems. 2020;93:377–382.
  • 22. Hawryluk M., Ziemba J. Application of the 3D reverse scanning method in the analysis of tool wear and forging defects. Measurement. 2018;128:204–213.
  • 23. Galanulis K., Reich C., Thesing J., Winter D. Optical Digitizing by ATOS for Press Parts and Tools. GOM. 2005.
  • 24. Bere P., Dudescu M., Neamțu C., Cocian C. Design, Manufacturing and Test of CFRP Front Hood Concepts for a Light-Weight Vehicle. Polymers. 2021;13(9):1374.
  • 25. Bere P., Neamtu C., Udroiu R. Novel Method for the Manufacture of Complex CFRP Parts Using FDM-based Molds. Polymers. 2020;12:2220.
  • 26. Bere P., Neamtu C. Methodology for evaluate the form deviations for formula one nose car. Central European Journal of Engineering. 2014;4(2):148–154.
  • 27. Neamțu C., Bere P. Methods for Checking the Symmetry of the Formula One Car Nose. Appl. Mech. Mater. 2014;657:785–789.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31c9b71e-6569-4e4e-bf2d-d473ed2e10f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.