Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the first results of a new way of using MODIS (Moderate Resolution Imaging Spectroradiometer) sensor data to visualize phytopigment inconstancy in the near-surface layer of water basins. Other sensors of this class alike, the MODIS spectral resolution is too low to reproduce the minimums of reflectance Rrs caused by phytopigments in water. However, MODIS is remarkable for the presence of a channel at 469 nm combined with channels at 412, 443, 488, 531, 547, and 555 nm. This makes it possible to distinguish the spectral limits of preferential light absorption by chlorophyll a (412-469 nm) and by accessory pigments (469-555 nm). These capabilities were realized thanks to spectral pixel indexation (SPI) of MODIS images of the sea surface. The SPI boils down to the fact that a user determines the presence of pigment minima in spectra of every image pixel, finds the sum of the wavelengths of these minima as a WRM code and assigns it to the image pixel as one of its attributes. WRM code = 100 is assigned to pixels free of the minima. Such indexation makes it possible to examine the inconstancy of phytopigments on the background of aquatic environment variability. Application of SPI approach to MODIS images of the Gulf of Mexico and the Baltic Sea made it possible to reveal new patterns of phytopigment dynamics during HABs events.
Czasopismo
Rocznik
Tom
Strony
482--496
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Laboratory of ocean optics, Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Bibliografia
- [1] Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., Brando, V. E., 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progr. Oceanogr. 123, 123-144.
- [2] Bracher, A., Bouman, H. A., Brewin, R. J. W., Bricaud, A., Brotas, V., Ciotti, A. M., Clementson, L., Devred, E., Di Cicco, A., Dutkiewicz, S., Hardman-Mountford, N. J., Hickman, A. E., Hieronymi, M., Hirata, T., Losa, S. N., Mouw, C. B., Organelli, E., Raitsos, D. E., Uitz, J., Vogt, M., Wolanin, A., 2017. Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development. Front. Mar. Sci. 4, 55. https://doi.org/10.3389/fmars.2017.0005.
- [3] Brown, C. M., MacKinnon, J. D., Cockshutt, A. M., Villareal, T. A., Campbell, D. A., 2008. Flux capacities and acclimation costs in Trichodesmium from the Gulf of Mexico. Mar. Biol. 154, 413-422. https://doi.org/10.1007/s00227-008-0933-z.
- [4] Ficek, D., Kaczmarek, S., Ston-Egiert, J., Wozniak, B., Majchrowski, R., Dera, J., 2004. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46 (4), 533-555.
- [5] Gordon, H. R., McCluney, W. R., 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl. Optics 14, 413-416.
- [6] Hajdu, S., Höglander, H., Larsson, U., 2007. Phytoplankton vertical distribution and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6, 189-205. https://doi.org/10.1016/j.hal.2006.07.006.
- [7] Hu, C., Cannizzaro, J., Kendall, J., Carder, L., Muller-Karger, F. E., Hardy, R., 2010. Remote detection of Trichodesmium blooms in optically complex coastal waters: examples with MODIS full-spectral data. Remote Sens. Environ. 114 (9), 2048-2058. https://doi.org/10.1016/j.rse.2010.04.011.
- [8] IOCCG, 2014. Phytoplankton Functional Types from Space. In: Sathyendranath, S. (Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 15, IOCCG, 164 Dartmouth, Canada.
- [9] Jerlov, N. G., 1976. Marine Optics. Elsevier, Amsterdam, 233 pp.
- [10] Kahru, M., Elmgren, R., 2014. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619-3633. https://doi.org/10.5194/bg-11-3619-2014.
- [11] Karabashev, G. S., Evdoshenko, M. A., 2015. Spectral features of cyanobacterial bloom in the Baltic Sea from MODIS data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 12 (3), 158-170 (in Russian).
- [12] Karabashev, G. S., Evdoshenko, M. A., 2016. Narrowband shortwave minima in spectra of backscattered light from the sea obtained from ocean color scanners as a remote indication of algal blooms. Oceanologia 58 (4), 279-291. https://doi.org/10.1016/j.oceano.2016.05.001.
- [13] Karabashev, G. S., Evdoshenko, M. A., 2018. Narrowband shortwave minima of multispectral reflectance as indication of algal blooms associated with the mesoscale variability in the Brazil-Malvinas Confluence. Oceanologia 60 (4), 527-543. https://doi.org/10.1016/j.oceano.2018.04.003.
- [14] Kopelevich, O. V., Sahling, I. V., Vazyulya, S. V., Glukhovets, D. I., Sheberstov, S. V., Burenkov, V. I., Karalli, P. G., Yushmanova, A. V., 2018. Bio-optical characteristics of the seas, surrounding the western part of Russia, from data of the satellite ocean color scanners of 1998-2017. M. OOO VASH FORMAT, Moscow, 140 pp.
- [15] Kowalczuk, P., Darecki, M., Zabłocka, M., Górecka, I., 2010. Validation of empiricaland semi-analytical remote sensing algorithms for estimating absorption by Coloured DissolvedOrganic Matter in the Baltic Sea from SeaWiFS and MODIS imagery. Oceanologia 52 (2), 171-196.
- [16] Letelier, R., Abbott, M., 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. Environ. 58, 215-223. https://doi.org/10.1016/50034-4257(96)00073-9.
- [17] Mobley, C. D., Stramski, D., Bisset, W. P., Boss, E., 2004. Optical modeling of ocean water. Is the Case 1-Case 2 classification still useful? Oceanography 17 (2), 60-67.
- [18] Morel, A., 1988. Optical modeling of the upper ocean in relations to its biogenous matter content. J. Geophys. Res. 93 (10), 749-768. https://doi.org/10.1029/JC093iC09p10749.
- [19] Ploug, H., 2008. Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments. Limnol. Oceanogr. 53, 914-921. https://doi.org/10.4319/lo.2008.53.3.0914.
- [20] Schollert Uz, S., Kim, G. E., Mannino, A., Werdell, P. J., Tzortziou, M., 2019. Developing a community of Practice for applied uses of future PACE data to address marine food security challenges. Front. Earth Sci. 7, 283. https://doi.org/10.3389/feart.2019.00283.
- [21] Sheberstov, S. V., 2015. System for batch processing of oceanographic satellite data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 12 (6), 154-161 (in Russian).
- [22] Vargo, G. A., 2009. A brief summary of the physiology and ecology of Karenia brevis Davis (G. Hansen and Moestrup comb. nov.) red tides on the West Florida Shelf and of hypotheses posed for their initiation, growth, maintenance, and termination. Harmful Algae 8 (4), 573-584.
- [23] Wasmund, N., Busch, S., Gromisz, S., Höglander, H., Jaanus, A., Johansen, V., Jurgensone, I., Karlsson, C., Kownacka, J., Kraśniewski, W., Olenina, I., 2013. Cyanobacteria biomass. HELCOM Baltic Sea Environment Fact Sheet, 17-Feb-15. http://www.helcom.fi/baltic-seatrends/environment-fact-sheets/.
- [24] Weisberg, R. H., Liu, Y., Lembke, C., Hu, C., Hubbard, K., Garrett, M., 2019. The coastal water circulation influence on the 2018 West Florida Shelf K. Brevis red tide bloom. J. Geophys. Res. 124, 2501-2512. https://doi.org/10.1029/2018JC014887.
- [25] Westberry, T. K., Siegel, D. A., 2006. Spatial and temporal distribution of Trichodesmium blooms in the world’s oceans. Global Biogeochem. Cy. 20, GB4016. https://doi.org/10.1029/2005GB002673.
- [26] Wojtasiewicz, B., Stoń-Egiert, J., 2016. Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. J. Appl. Phycol. 28, 2299-2314. https://doi.org/10.1007/s10811-015-0774-3.
- [27] Wozniak, B., Dera, J., 2007. Light absorption in sea water. Springer Science, Business Media New York, 463 pp.
- [28] Wozniak, M., Bradtke, K. M., Darecki, M., Krezel, A., 2016. Empirical model for phycocyanin concentration estimation as an indicator of cyanobacterial bloom in the optically complex coastal waters of the Baltic Sea. Remote Sens 8, 212. https://doi.org/10.3390/rs8030212.
- [29] Yentsch, C. S., Lapointe, B. E., Poulton, N., Phinney, D. A., 2008. Anatomy of a red tide bloom off the southwest coast of Florida. Harmful Algae 7, 817-826. https://doi.org/10.1016/j.hal.2008.04.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31c75a8b-d4f6-451b-8bd7-95c601b597e2