PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kernel function based regression approaches for estimating the oxygen transfer performance of plunging hollow jet aerator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To evaluate the capability of various kernels employed with support vector regression (SVR) and Gaussian process regression (GPR) techniques in estimating the volumetric oxygen transfer coefficient of plunging hollow jets. Design/methodology/approach: In this study, a data set of 81 observations is acquired from laboratory experiments of hollow jets plunging on the surface of water in the tank. The jet variables: jet velocity, jet thickness, jet length, and water depth are varied accordingly and the values of volumetric oxygen transfer coefficient is computed. An empirical relationship expressing the oxygenation performance of plunging hollow jet aerator in terms of jet variables is formulated using multiple nonlinear regression. The performance of this nonlinear relationship is compared with various kernel function based SVR and GPR models. Models developed with the training data set (51 observations) are checked on testing data set (24 observations) for performance comparison. Sensitivity analysis is carried out to examine the influence of jet variables in effecting the oxygen transfer capabilities of plunging hollow jet aerator. Findings: The overall comparison of kernels yielded good estimation performance of Radial Basis Function kernel (RBF) and Pearson VII Function kernel (PUK) using the SVR technique which is followed by nonlinear regression, and other kernel function based regression models. Research limitations/implications: The results of the study pertaining to the performance of kernels are based on the current experimental conditions and the estimation potential of the regression models may fluctuate beyond the selection of current data range due to datadependant learning of the soft computing models. Practical implications: Volumetric oxygen transfer coefficient of plunging hollow jets can be predicted precisely using SVR model by employing RBF as kernel function as compared to empirical correlation and other kernel function based regression models. Originality/value: The comparative analysis of kernel functions is conducted in this study. In previous studies, the predictive modelling approaches are implemented in simulating the aeration properties of cylindrical solid jets only, while this paper simulates the volumetric oxygen transfer coefficient of diverging hollow jets with the jet variables by utilizing polynomial, normalized polynomial, PUK, and RBF kernels in SVR and GPR.
Rocznik
Strony
74--84
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • National Institute of Technology Kurukshetra, Kurukshetra, India
autor
  • National Institute of Technology Kurukshetra, Kurukshetra, India
autor
  • National Institute of Technology Kurukshetra, Kurukshetra, India
Bibliografia
  • [1] E. Van de Sande, J.M. Smith, Mass transfer from plunging water jets, The Chemical Engineering Journal 10/2 (1975) 225-233, DOI: https://doi.org/10.1016/0300-9467(75)80041-4.
  • [2] K. Chipongo, M. Khiadani, Oxygen transfer by multiple vertical plunging jets in tandem, Journal of Environmental Engineering 143/1 (2016) 04016072, DOI: https://doi.org/10.1061/(asce)ee.1943-7870.0001145.
  • [3] S. Deswal, D.V.S. Verma, Performance evaluation and modeling of a conical plunging jet aerator, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 1/11 (2007) 616-620.
  • [4] M.E. Emiroglu, A. Baylar, Study of the influence of air holes along length of convergent-divergent passage of a venturi device on aeration, Journal of Hydraulic Research 41/5 (2003) 513-520, DOI: https://doi.org/10.1080/00221680309499996.
  • [5] S. Deswal, Oxygen transfer by multiple inclined plunging water jets, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering 2/3 (2008) 57-63.
  • [6] M.E. Jahromi, M. Khiadani, Experimental study on oxygen transfer capacity of water jets discharging into turbulent cross-flow, Journal of Environmental Engineering 143/6 (2017) 04017007, DOI: https://doi.org/10.1061/(asce)ee.1943-7870.0001194.
  • [7] A. Ohkawa, D. Kusabiraki, Y. Shiokawa, N. Sakai, M. Fujii, Flow and oxygen transfer in a plunging water jet system using inclined short nozzles and performance characteristics of its system in aerobic treatment of wastewater, Biotechnology and Bioengineering 28/12 (1986) 1845-1856, DOI: https://doi.org/10.1002/bit.260281212.
  • [8] K. Tojo, K. Miyanami, Oxygen transfer in jet mixers, The Chemical Engineering Journal 24/1 (1982) 89-97, DOI: https://doi.org/10.1016/0300-9467(82)80054-3.
  • [9] K. Tojo, N. Naruko, K. Miyanami, Oxygen transfer and liquid mixing characteristics of plunging Jet reactors, The Chemical Engineering Journal 25/1 (1982) 107-109, DOI: https://doi.org/10.1016/03009467(82)85027-2.
  • [10] S. Singh, S. Deswal, M. Pal, Performance analysis of plunging jets having different geometries, International Journal of Environmental Sciences 1/6 (2011) 1154-1167.
  • [11] T. Bagatur, A. Baylar, N. Sekerdag, The effect of nozzle type on air entrainment by plunging water jets, Water Quality Research Journal of Canada 37/3 (2002) 599-612, DOI: https://doi.org/10.2166/wqrj.2002.040.
  • [12] M.E. Emiroglu, A. Baylar, Role of nozzles with air holes in air entrainment by a water jet, Water Quality Research Journal Canada 38/4 (2003) 785-795, DOI: https://doi.org/10.2166/wqrj.2003.049.
  • [13] S. Ranjan, Hydraulics of Jet Aerators, Journal of the Institution of Engineers (India): Environmental Engineering Division 88 (2008) 29-32.
  • [14] M. Kumar, S. Ranjan, N.K. Tiwari, Oxygen transfer study and modeling of plunging hollow jets, Applied Water Science 8/5 (2018) 121, DOI: https://doi.org/10.1007/s13201-018-0740-8.
  • [15] A. Baylar, D. Hanbay, E. Ozpolat, An expert system for predicting aeration performance of weirs by using ANFIS, Expert Systems with Applications 35/3 (2008) 1214-1222, DOI: https://doi.org/10.1016/j.eswa.2007.08.019.
  • [16] Baylar, D. Hanbay, M. Batan, Application of least square support vector machines in the prediction of aeration performance of plunging overfall jets from weirs, Expert Systems with Applications 36/4 (2009) 8368-8374, DOI: https://doi.org/10.1016/j.eswa.2008.10.061.
  • [17] A. Baylar, M. Unsal, F. Ozkan, C. Kayadelen, Estimation of air entrainment and aeration efficiencies of weirs using genetic expression programming, KSCE Journal of Civil Engineering 18/6 (2014) 1632-1640, DOI: https://doi.org/10.1007/s12205-014-1058-1.
  • [18] S. Deswal, M. Pal, Comparison of polynomial and radial basis kernel functions based SVR and MLR in modeling mass transfer by vertical and inclined multiple plunging jets, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering 9/9 (2015) 1236-1240.
  • [19] S. Deswal, Modeling oxygen-transfer by multiple plunging jets using support vector machines and gaussian process regression techniques, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering 5/1 (2011) 1-6.
  • [20] T. Bagatur, F. Onen, A predictive model on air entrainment by plunging water jets using GEP and ANN, KSCE Journal of Civil Engineering 18/1 (2014) 304-314, DOI: https://doi.org/10.1007/s12205-0130210-7.
  • [21] F. Onen, Prediction of penetration depth in a plunging water jet using soft computing approaches, Neural Computing and Applications 25/1 (2014) 217-227, DOI: https://doi.org/10.1007/s00521-013-1475-y.
  • [22] T. Bagatur, F. Onen, Prediction of flow and oxygen transfer by a plunging water jets with genetic expression programming (GEP) models, Arabian Journal for Science and Engineering 39/6 (2014) 4421-4432, DOI: https://doi.org/10.1007/s13369-0141092-9.
  • [23] M. Kramer, S. Wieprecht, K. Terheiden, Penetration depth of plunging liquid jets – A data driven modelling approach, Experimental Thermal and Fluid Science 76 (2016) 109-117, DOI: https://doi.org/10.1016/j.expthermflusci.2016.03.007.
  • [24] M. Kumar, N.K. Tiwari, S. Ranjan, Prediction of oxygen mass transfer of plunging hollow jets using regression models, ISH Journal of Hydraulic Engineering (2018) 1-8, DOI: https://doi.org/10.1080/09715010.2018.1435311.
  • [25] APHA, AWWA, WEF, Standard methods for the examination of water and waste water, APHA Washington DC, 2005, 4.38-4.140.
  • [26] Cortes, V. Vapnik, Support-vector networks, Machine Learning 20/3 (1995) 273-297, DOI: https://doi.org/10.1007/BF00994018.
  • [27] A.J. Smola, Regression estimation with support vector learning machines, Master’s thesis, Technische Universität München, 1996.
  • [28] V.N. Vapnik, Statistical learning theory, Vol. 3, Wiley, New York, 1998.
  • [29] C.E. Rasmussen, Gaussian processes for machine learning, Cambridge, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31c66f84-cf1d-42c5-bca0-1c8ef9210015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.