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ABSTRACT

Purpose: To evaluate the capability of various kernels employed with support vector 
regression (SVR) and Gaussian process regression (GPR) techniques in estimating the 
volumetric oxygen transfer coefficient of plunging hollow jets.

Design/methodology/approach: In this study, a data set of 81 observations is acquired 
from laboratory experiments of hollow jets plunging on the surface of water in the tank. The 
jet variables: jet velocity, jet thickness, jet length, and water depth are varied accordingly 
and the values of volumetric oxygen transfer coefficient is computed. An empirical 
relationship expressing the oxygenation performance of plunging hollow jet aerator in terms 
of jet variables is formulated using multiple nonlinear regression. The performance of this 
nonlinear relationship is compared with various kernel function based SVR and GPR models. 
Models developed with the training data set (51 observations) are checked on testing data 
set (24 observations) for performance comparison. Sensitivity analysis is carried out to 
examine the influence of jet variables in effecting the oxygen transfer capabilities of plunging 
hollow jet aerator. 

Findings: The overall comparison of kernels yielded good estimation performance of Radial 
Basis Function kernel (RBF) and Pearson VII Function kernel (PUK) using the SVR technique 
which is followed by nonlinear regression, and other kernel function based regression 
models.

Research limitations/implications: The results of the study pertaining to the performance 
of kernels are based on the current experimental conditions and the estimation potential of 
the regression models may fluctuate beyond the selection of current data range due to data-
dependant learning of the soft computing models.

Practical implications: Volumetric oxygen transfer coefficient of plunging hollow jets can 
be predicted precisely using SVR model by employing RBF as kernel function as compared 
to empirical correlation and other kernel function based regression models.

Originality/value: The comparative analysis of kernel functions is conducted in this study. 
In previous studies, the predictive modelling approaches are implemented in simulating the 
aeration properties of cylindrical solid jets only, while this paper simulates the volumetric 
oxygen transfer coefficient of diverging hollow jets with the jet variables by utilizing 
polynomial, normalized polynomial, PUK, and RBF kernels in SVR and GPR.
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ANALYSIS AND MODELLING

1. Introduction 
 

Water jets plunging into receiving pool of water 

represent an effective and economical means of aeration.  

A scattering of air bubbles happens underneath the pool 

surface as a high speed liquid jet plunges on the liquid 

surface subsequent to being driven out from a specific fall 

height. The surrounding air around the plunging jet entrains 

at the impinging point generating a high level of 

disturbances due to jet impact. Exchange of oxygen mass 

occurs between the air bubbles and water pool which 

improves with the submergence time of air bubbles 

underneath the pool surface. The vertical dispersion and 

horizontal scattering of air bubbles enhances the bubble 

activity as well as the retention time underneath which is 

expected to be beneficial for oxygen transfer. The 

construction and operation of plunging jet equipment is 

simple, energetically attractive, and it produces aeration 

and mixing together with the jet impact [1-3]. Due to these 

inherent advantages, plunging jets have applications in 

fermentation, chemical, and treatment of wastewater [4]. 

Many studies exist in literature concerning the 

prominence of jet variables of plunging jets on the 

performance of oxygenation of water [5] discussed the 

impact of no. of jets plunging from a particular height into 

a water tank and showed improvement in oxygen transfer 

rate. In some recent work on oxygen transfer by plunging 

jets, the significance of jet length, jet velocity, water depth, 

no. of tandem jets and jet power is extensively studied and 

observed influential in a flowing channel of water [2,6]. 

Research is conducted concerning the effect of jet angle 

and jet length for plunging jets in water tank [1,7-9]. Some 

researchers performed aeration studies on the modified 

nozzle shapes of plunging jets [10,11]. [4,12] recognised 

the use of air holes on circular and venturi nozzles plunging 

into stagnant water and studied the aeration properties [3] 

and [13] investigated the oxygen transfer properties of 

hollow jets plunging into water tank. The impact of jet 

angle with the variation of jet thickness of plunging hollow 

jets on oxygen transfer properties is studied by [14].      

Soft computing gained considerable attention in the 

area of hydraulics and water resources engineering. New 

artificial intelligence based methods have been introduced 

recently and successfully implemented in the simulation 

and estimation of the actual data. The utility of soft 

computing approaches in the field of aeration is 

documented in some studies [15,16] in their studies, 

success fully implemented ANFIS (adaptive neuro fuzzy 

inference system), LS-SVM (least square support vector 

machines) on the data sets of air entrainment rate and 

aeration efficiency observed from falling overfall jets from 

triangular weirs with input jet parameters as discharge, 

drop height, and sharp crest angle. The performance of 

theses modelling approaches were compared with multiple 

linear and multiple nonlinear regression based predictive 

equations. In an another study by [17], the capability of 

GEP (genetic expression programming) is tested in relating 

the triangular weir variables with the air entrainment rate as 

well as aeration efficiency and found to working well 

[18,19] achieved good predictive accuracy of oxygen mass 

transfer coefficient of multiple jets plunging into stagnant 

water pool by applying SVM (support vector machines) 

and GP (Gaussian process) regression approaches [20] 

predicted the air entrainment rate of plunging water jets 

with basic water jet properties using GEP and ANN 

modelling and compared the results with multiple linear 

and nonlinear regression equations. In a predictive study, 

[21] examined the performance of ANN, GEP, and 

multiple linear and nonlinear regression in predicting the 

penetration depth of water jets impinging on stagnant water 

pool [22], in their study based on the results of previous 

research, evaluated the capability of GEP in the estimation 

of air entrainment rate, bubble penetration depth and 

oxygen transfer efficiency of plunging water jets [23] 

experimented on plunging water jets with extended 

discharge and effectively estimated the penetration depth 

by using ANN and non-linear regression techniques [24] 

acknowledged the applicability of SVM and M5 tree 

regression techniques in predicting the oxygen mass 

transfer related to the jet thickness, jet velocity and jet 

angle of hollow jets plunging into a water tank. The 

performance of dimensional and non-dimensional data is 

compared along with predictive correlations yielded from 

nonlinear regression.    

1.  Introduction
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In this work, the performance comparison of various 

kernel functions (normalized polynomial, polynomial, 

RBF, and PUK) is checked for the accurate predictions of 

volumetric oxygen transfer coefficient using Support 

Vector Regression (SVR) and Gaussian Process Regression 

(GPR) techniques. Based on past works, the soft computing 

based data mining techniques are mostly utilized in field of 

cylindrical nozzle plunging jets for the estimation of 

aeration properties, while the present study highlights the 

performance of soft computing (SVR and GPR) based 

models on the experimental data collected from plunging 

hollow jet aerators. The oxygen mass transfer properties of 

plunging hollow jets is correlated with the four basic jet 

variables: jet thickness, jet velocity, jet length, and water 

depth in the pool. So the objective of the study is to 

formulate an empirical relationship considering volumetric 

oxygen mass transfer coefficient as output variable and 

compare the prediction capability with various kernel 

function based regression models. 

 

 

2. Materials and methods 
 

2.1. Experimental set up and collection of data 
 

The sketch of experimental set up I given in Figure 1. 

An aeration tank of water holding capacity of (0.87× 0.87× 

0.87) m3 is connected to a water pump of 1HP using a GI 

pipe line of 2 inches diameter. An electromagnetic flow  

 

meter is used at the delivery pipe for the accurate 

measurement (±0.5% of reading) of discharge values of 

circulated water. At the delivery end of water discharging 

pipe, a cone having an angle 60° from the base, made of 

Perspex material, is fitted to form a water jet falling in 

hollow formation on the surface of water inside the 

aeration tank. The up and down movement of cone 

respective to the pipe delivery end alters the jet flow area 

and so is the thickness of water jet sheet. The fabrication of 

hollow jet aerator assembly and procedure adopted to 

calculate the jet parameters (jet thickness and jet velocity) 

is given in details in our previous paper [14]. A control 

valve is used to adjust and regulate the flow through pipe. 

The distance travelled by the impinging water jet in 

atmosphere is the termed as jet length (��) i.e. the height of 

delivery end of pipe from the surface of water. In this 

work, jet length is varied from 0.1 m to 0.4 m by 

maintaining a constant water depth of 0.6 m and water 

depth is varied from 0.4 m to 0.7 m by maintaining a 

constant jet length of 0.1 m .The jet lengths and water 

depths are varied in four increments of 0.1 m (±1 mm 

accuracy). The annular gap or jet thickness (5 mm-10 mm) 

is measured using a scale (±0.5 mm accuracy). The 

temperature of water is measured using a digital 

thermometer (±0.1°C accuracy). After filling a particular 

volume of water in the tank and adjusting a constant jet 

thickness and jet length, setting of a particular discharge is 

done. Thereafter, tank water is deoxygenated by mixing 

sodium sulphite and cobaltous chloride into it [11].  

 

 
 

Fig. 1. Experimental set up  

2.  Materials and methods

2.1.  Experimental set up and collection of data
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Thereafter, a water sample is collected from tank water for 

the observation of initial dissolved oxygen (Co). After that, 

the pump is started and the water is allowed to circulate for 

a time period of 40s. Following this, a sample is collected 

for the observation of final dissolved oxygen (Ct). The 

procedure is repeated for the desired values of jet variables 

and representative samples of water are collected. Azide 

modification method [25] was used to measure the oxygen 

dissolved in initial and final samples of water. The value of 

volumetric oxygen transfer coefficient of water at test 

temperature T°C can be obtained from the following 

relation [5].  
 

������ 	 

� �
 �

�����
�����

� (1) 

 

where ������ is termed as volumetric oxygen transfer 

coefficient (s-1) at test temperature T°C, ��is the saturation 

oxygen concentration (mg L-1), �� is the initial oxygen 

concentration before aeration (mg L-1), ��= final oxygen 

concentration after aeration (mg L-1) 

For performance comparison, the value volumetric 

oxygen transfer coefficient at standard temperature of 20°C 

and pressure of 1 atmosphere can be calculated from the 

following relation [5]. 

 

��� 	 ����������������� (2) 

 

 

2.2. Data set 
 

For the execution of soft computing models, a total of 

81 experimental observations of ��� (1/s) is measured by 

employing plunging hollow jet aerator with the variation of 

jet thickness (���, jet velocity (���, jet length (��� and water 

depth ( !). Two data groups is formed from the total 

experimental observations for the training (57 readings) 

and testing (24 readings) of the modelling techniques. The 

grouping of the data was based on random selection from 

the total readings. The features of both group of data sets is 

mentioned in Table 1. 

 

Table 1. 

Features of the data set 

Parameter 
Training Testing 

��(m) ��(m)  !(m) ��(m/s) ���(1/s) ��(m) �� (m)  !(m) ��(m/s) ���(1/s) 

Mean 0.008 0.19 0.57 3.14 0.0229 0.007 0.17 0.56 3.29 0.0277 

Median 0.010 0.10 0.60 2.95 0.0154 0.005 0.10 0.60 3.26 0.0202 

SD 0.003 0.11 0.09 1.41 0.0215 0.003 0.10 0.09 1.49 0.0253 

Kurtosis -2.062 -0.70 -0.15 -0.21 1.4049 -2.156 -0.07 -0.37 -1.08 -0.3021 

Skewness -0.108 0.91 -0.68 0.77 1.3628 0.179 1.15 -0.58 0.16 0.8958 

Minimum 0.005 0.10 0.40 1.03 0.0018 0.005 0.10 0.40 1.10 0.0021 

Maximum 0.010 0.40 0.70 6.19 0.0863 0.010 0.40 0.70 6.13 0.0837 

 

2.3. Regression approaches 
 

Multiple nonlinear regression (MNLR) 

A multi-nonlinear relationship is considered by using 

��� as dependant variable and the parameters, ��,"��, ��, 
and  ! as explanatory variables. A nonlinear regression 

model is established using training data expressing the ��� 

in terms of jet parameters (Equation 4) based on following 

functional relationship. 
 

��� 	 #��"��$%��$&��$' !$(� (3) 

 

where � is the constant, )
, )�, )*+ ), are the coefficients 

of the function and can be acquired by minimizing the sum 

of squares of error in approximation.  
 

��� 	 ��-.-"����/
��
�0*������*' !���1* (4) 

Support Vector Regression (SVR) 

This method is a regression and classification approach 

which originates from statically learning theory [26]. The 

SVMs classification techniques depend on the standard of 

ideal division of classes. In the event that the classes are 

divisible: this strategy chooses, from amongst the endless 

number of linear classifiers, the one with minimum 

generalization error, Along these lines, the chosen hyper 

plane will be one that leaves the most extreme edge 

between the two classes, where edge is characterized as the 

total of the separations of the hyper plane from the nearest 

purpose of the two classes. It very well may be 

accomplished by anticipating the first arrangement of 

factors into a higher dimensional element space and 

figuring a straight characterization issue in the element 

space [27,28]. 

2.2.  Data set

2.3.  Regression approaches
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Gaussian Processes Regression (GPR) 

The Gaussian (GP) models depend on the presumption 

that nearby observations ought to pass on data about one 

another. They indicate an earlier specifically over function 

space. Therefore, the GP is a natural generalization 

distribution whose covariance is a matrix and mean is a 

vector. The Gaussian method is based upon the function 

whereas distribution relies upon the vector. Due to earlier 

information pertaining to the function, the validation is not 

necessary for speculation and Gaussian process regression 

model can comprehend the prescient distribution related to 

test input [29].  

A Gaussian procedure is characterized as an 

accumulation of arbitrary factors, any limited number 

which has a joint multivariate Gaussian distribution.  

The n number of pairs (xi× yi) have been made through  

the �"2 3 4� which indicates the input and output data 

domain, correspondingly. It is assumed that 5 6 7, 

accordingly the GP on 2 is uttered by mean function  

µ: � 8 9"and covariance function :; 2 3 2 8 <. 

 

2.4. Kernel functions and user-defined parameters 

 

 

Implementation of SVR and GPR techniques requires 

the choice of suitable kernel function which works 

internally to map the given data to a high dimensional 

feature space for processing. Four type of kernel functions 

utilized in this study are: 

1. Normalized polynomial kernel (norm poly): 

( ) ( ) ( ) ( )xx,,x,x/x,xx,xK iiii KKK=  
 

2. Polynomial kernel (poly):  

( ) ( )( )d
1x,xx,xK ii +=

 
 

3. Radial Basis Function kernel (RBF): 

( )
2

i xx

i ex,xK
−−

=
γ

 
 

4. Pearson VII Function kernel (PUK):

( ) ��
�

�
��
�

�
��
	


�
� −−+=

ω
ω σ 2)/1(

2

ii )/12xx2(1/1x,xK  

 

After selecting the kernels, the next step requires selection 

of kernel specific parameters based on the model 

performance. The exponent (d) in normalized polynomial 

and polynomial kernel, kernel width (γ ) in radial basis 

function (RBF) kernel, and parameters, = (controls Pearson 

width) and > (tailing factor of the peak) in Pearson VII 

Function kernel (PUK) need to be established based on the 

precision in prediction. 

Three standard statistical measures, coefficient of 

determination (R2), Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) are selected as principle 

measures to evaluate the accuracy of predictive modelling 

methods. Based on modelling performance, a common 

value of regularization parameter (C=13) in SVR and 

Gaussian noise (0.1) in GPR is established and chosen in 

all the four kernel functions to achieve a fair comparison of 

kernels. After that, the models are tuned for kernel specific 

parameters (d,γ ,"=,">) in both SVR and GPR techniques. 

The optimization of user defined parameters is executed by 

carrying out several runs with these parameters on the 

training data and investigating the performance of the 

developed models on testing data. Smaller values of RMSE 

and MAE deduce closer approximation of the experimental 

data by the modelling methods. Larger R2 values agree to a 

stronger matching of trends in the experimental data by the 

model predictions. The established values of user defined 

parameters identified from various runs are provided in 

Table 2.  

 

Table 2. 

Model specific user-defined parameters 

Method Model specific parameters  

SVR_norm poly C =13, d =20.3 

SVR_poly C =13, d =2 

SVR_rbf C =13, γ = 2.6 

SVR_puk C =13, >"= 0.4, = = 1.1 

GPR_norm poly Gaussian noise =0.1, d =9 

GPR_poly Gaussian noise =0.1, d =2 

GPR_rbf Gaussian noise =0.1, γ = 3.5 

GPR_puk Gaussian noise =0.1, >"= 0.7, = = 0.7 

 

 

3. Modelling results  
 

3.1. Results of MNLR model 

 

The obtained relationship using MNLR is plotted with 

the actual values of their respective data sets of training and 

testing and represented in Figure 2. The regression 

equation (4) plotted in Figure reveals nearby fitting of 

predicted data points of training and testing to the perfect 

agreement line and suggests good estimates by the 

developed functional relationship. The RMSE observed 

with training and testing of the models are 0.00575 

(R2=0.93) and 0.01030 (R2=0.85), respectively (Tab. 3). 

3.  Modelling results

2.4.  Kernel functions and user-defined 
parameters

3.1.  Results of MNLR model
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Table 3. 

Performance of the models 

Model 
 Training data  Testing data 

Rank 
R2 RMSE MAE R2 RMSE MAE 

MNLR 0.93 0.00575 0.00312 0.85 0.01030 0.00559 3 

SVR_norm poly 0.74 0.01083 0.00334 0.50 0.01885 0.01321 9 

SVR_poly 0.92 0.00596 0.00344 0.84 0.01078 0.00611 5 

SVR_rbf 0.99 0.00236 0.00103 0.88 0.00993 0.00590 1 

SVR_puk 1.00 0.00012 0.00011 0.86 0.01021 0.00622 2 

GPR_norm poly 0.75 0.01065 0.00562 0.61 0.01752 0.01019 8 

GPR_poly 0.84 0.00880 0.00649 0.79 0.01175 0.00823 7 

GPR_rbf 0.99 0.00187 0.00134 0.86 0.01083 0.00677 6 

GPR_puk 1.00 0.00057 0.00037 0.87 0.01046 0.00632 4 

 

 

  
Fig. 2. Scattering of ��� using MNLR model (Equation 4) 

 

 

3.2 Results of SVR models  
 

The established user-defined parameters of the various 

kernel functions for support vector regression (SVR) are 

presented in Table 2. The results of the developed models 

are depicted as scattering plots for the training and testing 

phases of the data and represented with the line of perfect 

prediction (y=x) in order to apprehend the scattering. 
Figure 3 and Figure 4 illustrate the plots between 

actual and predicted values of volumetric oxygen transfer 

coefficient (���) by SVR models for the training and 

testing phases, respectively. Observing, Figures 3 and 4 

indicate that the prediction of normalized polynomial 

kernel is worse in training as well as testing and the 

predicted ��� data points lie far from the line of perfect 

prediction as compared to other kernels. On the other 

hand, polynomial kernel has slightly superior 

performance than normalized polynomial kernel and the 

points are relatively near to the perfect prediction line. 

RBF and PUK kernels have good prediction performance 

and the estimated values of ��� in training and testing are 

closer to the perfect prediction line. All the kernel 

functions fall in performance during testing of the data 

and the predicted data is relatively distant from line of 

perfect prediction as compared to training data. The 

performance statistics for the SVR model is given in 

Table 2. From Table 2, the RMSE values of RBF kernel is 

lowest in testing stage, hence, RBF kernel based SVR 

performs best in approximating the actual values of ��� 

and outperforms normalized poly, polynomial, and PUK 

kernels using SVR.  

 

 

 
Fig. 3. Scattering of ��� using SVR models (Training) 
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3.2.  Results of SVR models
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Fig. 4. Scattering of ��� using SVR models (Testing) 

 
3.3 Results of GPR models  
 

The established user-defined parameters of the various 

kernel functions for Gaussian Process Regression (GPR) 

are presented in Table 2. The results of the developed 

models are depicted as scattering plots for the training and 

testing phases of the data and represented with the line of 

perfect prediction (y=x) in order to apprehend the 

scattering. Figure 5 and Figure 6 illustrate the plots 

between actual and predicted values of volumetric oxygen 

transfer coefficient (���) by GPR models for the training 

and testing phases, respectively. Similar to the results 

observed with the SVR models, normalized polynomial and 

polynomial kernels using GPR have poor generalization 

performance and the estimated results are inferior to the 

RBF and PUK kernel functions. The scattering of the 

predicted ��� values is higher (Figs. 5 and 6) as well as the 

error values in prediction of ��� with both the kernels  

as compared to other kernels (Tab. 3). Polynomial kernel 

has edge over Normalized Polynomial kernel as the RMSE 

and MAE values are lower in Polynomial GPR. (Tab. 3).  

In testing, the performance in prediction of ��� is obtained 

best with PUK based GPR (RMSE=0.01046, R2= 0.87)  

as compared to RBF kernel based GPR (RMSE=0.01083, 

R2= 0.86) and hence PUK based GPR performs best in 

approximating the actual values of ��� and outperforms 

normalized poly, polynomial, and RBF kernels using GPR. 

 
3.4 Comparison of kernel functions 
 

Evaluating the results from Table 3, normalized poly-

nomial kernel based regression models using SVR and 

GPR have worse capabilities in estimation and the majority 

of predicted data values are beyond ±20% lines. The error 

values (RMSE and MAE) are highest with normalized 

polynomial kernel using both regression approaches.  

The archived error values of polynomial kernel using SVR 

(RMSE=0.01078, MAE=0.00611) and GPR (RMSE= 

0.01175, MAE=0.00823) are lower to the normalized 

polynomial kernel. The RBF kernel based SVR (RMSE= 

0.00993, MAE=0.00590) ranked 1st and the prediction is 

superior to PUK based SVR (RMSE=0.01021, MAE= 

0.00622) which attains the 2nd rank. But in GPR modelling, 

PUK kernel ranked best and achieves RMSE and MAE 

values as 0.01046 and 0.00632, respectively as compared 

to RBF based GPR (RMSE=0.01083, MAE=0.00677).  

 

 
 

Fig. 5. Scattering of ��� using GPR models (Training) 

 

 
 

Fig. 6. Scattering of ��� using GPR models (Testing) 
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3.3.  Results of GPR models

3.4.  Comparison of kernel functions
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The performance of all the kernel functions improves 

significantly in SVR as compared to GPR except for the 

normalized polynomial kernel which shows good accuracy 

with GPR relative to SVR. So SVR models have better 

estimation capability than GPR models in this study. Based 

on testing of the models, the overall ranking of the 

regression models in prediction of ��� are as SVR_rbf 

(1st), SVR_puk (2nd), MNLR (3rd), GPR_puk (4th), 

SVR_poly (5th), GPR_rbf (6th), GPR_poly (7th), GPR_norm 

poly (8th), SVR_norm poly (9th). Figure 7 shows the scatter 

plot of testing data using MNLR, SVR and GPR. Most of 

the data predicted by RBF and PUK kernels in SVR, and 

MNLR (Equation 4) scatters almost within or nearer to 

±20% lines than the other models.    
 

 
 

Fig. 7. Scatter plot (±20%) of prediction by SVR, GPR, and 

MNLR models (Testing) 

 

The performance of SVR_rbf is best relative to other 

regression models, so the prediction potential of this model 

is compared with the experimental ��� as well as nonlinear 

regression equation (MNLR) predicted ���. Figure 8 and 

Figure 9 show the impact of jet velocity on ��� for jet 

thicknesses of 5 mm and 10 mm, respectively. As observed 

with the previous studies [3,14], ��� significantly increases 

with increase in jet velocity. With increase in jet velocity, 

the impact of the jet at the surface of pool water increases 

which leads to relatively deeper penetration as well as 

heavy turbulence with high velocity jets. The performance 

of both the modelling techniques is good in simulating the 

actual behaviour of oxygen mass transfer to water as the 

predicted ��� is close to the experimental data. SVR_rbf is 

working superior in precisely following the experimental 

values and the simulated points resides near to the actual 

experimental values comparative to the MNLR model 

(Fig. 8 and Fig. 9). 

 

 
 

Fig. 8. Variation of experimental ��� with MNLR and 

RBF kernel based SVR showing the impact of jet velocity 

(��=0.005 m, ��=0.2 m,  !=0.6 m) 

 

 
 

Fig. 9. Variation of experimental ��� with MNLR and 

RBF kernel based SVR showing the impact of jet velocity 

(��=0.01 m, ��=0.2 m,  !=0.6 m) 

 
3.5 Sensitivity analysis of the jet variables 
 

Sensitivity analysis was used to determine the most 

significant jet variable in the prediction of volumetric 

oxygen transfer coefficient of hollow jet aerator. For this, 

RBF kernel based SVR regression, performing best with 

the data set was used. Different set of training data was 
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created by removing one input variable at a time and results 

were reported in terms of coefficient of determination (R2) 

and root mean square error (RMSE). The degree of change 

produced in the RMSE and R2 values depicts the 

dominance of the variable in influencing the oxygen mass 

transfer. Results from Table 4 suggests that the most 

dominating variable is the jet velocity and have significant 

role in predicting the volumetric oxygen transfer 

coefficient in comparison to other input parameters. 

Relative change in RMSE and R2 is considerably higher 

by removing jet velocity (Tab. 4). Jet thickness is the 2nd 

most influencing parameter. Jet length is the 3rd most 

influencing parameter after jet velocity and jet thickness, 

respectively. 

 

 

Table 4. 

Sensitivity analysis using RBF kernel based SVR regression 

Input combination Input parameter removed R2 RMSE (1/s) 

?@,"A@, B@, CD - 0.99 0.00236 

A@, B@, CD �� 0.83 0.0088 

?@, B@, CD �� 0.075 0.02147 

?@,"A@, CD �� 0.93 0.00559 

?@,"A@, B@  ! 0.95 0.00479 

 

 

4. Conclusions 
 

In this study, experimental results of volumetric oxygen 

transfer coefficient (���) observed with various jet 

variables by creating hollow water jet impinging on the 

surface of water in the tank is modelled. An empirical 

nonlinear relationship of ��� is developed by employing 

jet velocity, jet thickness, jet length, and water depth  

as input variables and the performance of this relationship 

is compared with Support Vector Regression (SVR)  

and Gaussian Process Regression (GPR). Four kernel 

functions, namely, normalized polynomial, polynomial, 

Radial Basis Function (RBF), and Pearson VII Function 

kernel (PUK) are implemented in SVR as well as GPR 

techniques.  

All the kernel functions (except for normalized poly-

nomial kernel) show improvement in prediction of ��� 

when employed with SVR technique as compared to GPR 

technique, so, SVR has good predictive accuracy relative to 

GPR. 

In SVR technique, both the RBF as well as PUK 

kernels are working fine but due to slightly less error in 

estimation, RBF kernel ranked best out of the other kernel 

functions, while in GPR technique, PUK is performing best 

relative to other kernel functions.  

The prediction capability of multiple nonlinear 

regression based empirical relationship is greater than all 

the developed GPR models but inferior to RBF and PUK 

based SVR models. Hence the relationship is simply useful 

and reasonable in determining the ��� close to the 

experimental values with the current data set. 

Based on the outcomes from this study, SVR using 

RBF kernel is performing well and predicts the 

experimental ��� nearly within a scatter of ±20%. 

The jet velocity comes out to be the most important 

parameter followed by jet thickness and jet length, 

respectively in influencing the ��� based on the sensitivity 

results using RBF based SVR model. 
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