PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the possibilities of using atomic force microscopy (AFM) for characterisation of polymeric nanofiltration membrane surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena możliwości wykorzystania mikroskopu sił atomowych w badaniach powierzchni polimerowych membran nanofiltracyjnych
Języki publikacji
EN
Abstrakty
EN
In this study, the possibility of using an atomic force microscopy to analyse the surface structure of the polymeric nanofiltration membranes was investigated. Analysis of the obtained results allowed one to conclude that the size of the scanned surface directly affects the measurement result of both the average and root-mean-square roughness of tested membranes. Therefore, it is necessary to compare the results obtained for the same size of the scanned surface.
PL
W pracy zbadano możliwość zastosowania mikroskopu sił atomowych do analizy struktury powierzchni polimerowych membran nanofiltracyjnych. Analiza uzyskanych wyników pozwoliła na stwierdzenie, że wielkość skanowanej powierzchni bezpośrednio wpływa na wynik pomiaru zarówno chropowatości średniej arytmetycznej, jak i kwadratowej testowanych membran. Konieczne jest zatem porównywanie wyników uzyskanych dla takich samych wielkości skanowanej powierzchni.
Rocznik
Tom
Strony
17--25
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warsaw
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warsaw
Bibliografia
  • 1. Ahmad A.L., Ooi B.S., Wahab Mohammad A., Choudhury J.P.: Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment. Desalination, 2004, 168, 215–221.
  • 2. Ghizellaoui S., Chibani A., Ghizellaoui S.: Use of nanofiltration for partial softening of very hard water. Desalination, 2005, 179, 315–322.
  • 3. Orecki A., Tomaszewska M., Karakulski K., Morawski A.W.: Surface water treatment by the nanofiltration method. Desalination, 2004, 162, 47–54.
  • 4. Bellona C., Drewes J.E.: Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: A pilot-scale study. Water Research, 2007, 41, 3948–3958.
  • 5. Ku Y., Chen S., Wang W.: Effect of solution composition on the removal of copper ions by nanofiltration. Separation and Purification Technology, 2005, 43, 135–142.
  • 6. Ortega L.M., Lebrun R., Blais J.F., Hausler R.: Removal of metal ions from an acidic leachate solution by nanofiltration membranes. Desalination, 2008, 227, 204–216.
  • 7. Wang Z., Liu G., Fan Z., Yang X., Wang J., Wang S.: Experimental study on treatment of electroplating wastewater by nanofiltration. Journal of Membrane Science, 2007, 305, 185–195.
  • 8. Vrijenhoek E.M., Hong S., Elimelech M.: Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 2001, 188, 115–128.
  • 9. Nanda D., Tung K.L., Li Y.L., Lin N.J., Chuang C.J.: Effect of pH on membrane morphology, fouling potential, and filtration performance of nanofiltration membrane for water softening. Journal of Membrane Science, 2010, 349, 411–420.
  • 10. Boussu K., Vandecasteele C., Van der Bruggen B.: Relation between membrane characteristic and performance in nanofiltration. Journal of Membrane Science, 2008, 310, 51–65.
  • 11. Boussu K., Van der Bruggen B., Volodin A., Snauwaert J., Van Haesendonck C., Vandecasteele C.: Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM. Journal of Colloid and Interface Science, 2005, 286, 632–638.
  • 12. Tanninen J., Mänttäri M., Nyström M.: Effect of salt mixture concentration on fractionation with NF membranes. Journal of Membrane Science, 2006, 283, 57–64.
  • 13. Sharna R.R., Chellam S.: Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries. Journal of Colloid Interface Science, 2008, 328, 353–366.
  • 14. Childress A.E., Elimelech M.: Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristic. Environmental Sciences and Technology, 2000, 34, 3710–3716.
  • 15. Afonso M.D., Hagmeyer G., Gimbel R.: Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with theconcentration of salt solutions. Separation and Purification Technology, 2001, 22–23, 529–541.
  • 16. Rice G., Barber A.R., O’Connor A.J., Pihlajamaki A., Nystrom M., Stevens G.W., Kentish S.E.: The influence of dairy salts on nanofiltration membrane charge. Journal of Food Engineering, 2011, 107, 164–172.
  • 17. Teixeira M.R., Rosa M.J., Nystrom M.: The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 2005, 265, 160–166.
  • 18. Religa P., Kowalik A., Gierycz P.: A new approach to chromium concentration from salt mixture solution using nanofiltration. Separation and Purification Technology, 2011, 82, 114–120.
  • 19. Religa P., Kowalik-Klimczak A., Gierycz P.: Study on the behavior of nanofiltration membranes using for chromium(III) recovery from salt mixture solution. Desalination, 2013, 315, 115–123.
  • 20. Lawrence N.D., Perera J.M., Iyer M., Hickey M.W., Stevens G.W.: The use of streaming potential measurements to study the fouling and cleaning of ultrafiltration membranes. Separation and Purification Technology, 2006, 48, 106–112.
  • 21. Al-Amoudi A., Williams P., Mandale S., Lovitt R.W.: Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability. Separation and Purification Technology, 2007, 54, 234–240.
  • 22. Sohrabi M.R., Madaeni S.S., Khosravi M., Ghaedi A.M.: Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination, 2011, 267, 93–100.
  • 23. Boussu K., Belpaire A., Volodin A., Van Haesendonck C., Van der Meeren P., Vandecasteele C., Van der Bruggen B.: Influence of membrane and colloid characteristics on fouling of nanofiltration membranes. Journal of Membrane Science, 2007, 289, 220–230.
  • 24. Carvalho A.L., Maugeri F., Silva V., Hernandez A., Palacio L., Pradanos P.: AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate. Journal of Materials Science, 2011, 46, 3356–3369.
  • 25. Nanda D., Tung K.L., Li Y.L., Lin N.J., Chuang C.J.: Effect of pH on membrane morphology, fouling potential, and filtration performance of nanofiltration membrane for water softening. Journal of Membrane Science, 2010, 349, 411–420.
  • 26. Platt S., Nyström M., Bottino A., Capannelli G.: Stability of NF membranes under extreme acidic conditions. Journal of Membrane Science, 2004, 239, 91–103.
  • 27. Tang C.Y., Kwon Y.-N., Leckie J.O.: Effect of membrane chemistry and coating layer on physicochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 2009, 242, 149–167.
  • 28. Jahanshahi M., Rahimpour A., Peyravi M.: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes. Desalination, 2010, 257, 129–136.
  • 29. Religa P., Kowalik A., Gierycz P.: Effect of membrane properties on chromium(III) recirculation from concentrate salt mixture solution by nanofiltration. Desalination, 2011, 274, 164–170.
  • 30. Tang C.Y., Kwon Y-N., Leckie J.: Probing the nano- and micro-scales of reverse osmosis membranes – A comprehensive characterization of physicochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurement. Journal of Membrane Science, 2007, 287, 146–156.
  • 31. Tang C.Y., Kwon Y-N., Leckie J.O.: Effect of membrane chemistry and coating layer on physicochemical properties of thin film composite polyamide RO and NF membranes. II. Membrane physicochemical properties and their dependence on polyamide and coating layers. Desalination, 2009, 242, 168–182.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31bd2e5b-5ba8-4565-bb44-841ff5bdbaa4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.