PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An automatic fault diagnosis method for rolling bearing is proposed in this paper. Partially ensemble empirical mode decomposition (PEEMD) is developed to solve the problem of mode mixing existing in empirical mode decomposition. Compared with the ensemble empirical mode decomposition, PEEMD generates much more accurate intrinsic mode functions (IMFs) and the decomposing results are complete and orthogonal. Therefore, PEEMD is utilized to preprocess the vibration signals of rolling bearing. Moreover, the features in time, frequency domains of IMFs and ones of original data in time–frequency domain are extracted to reflect the change of fault information. To avoid the high dimension of features, Laplacian score for feature selection is utilized to sort the initial features according to their significances. The pattern recognition method, variable predictive model-based class discrimination (VPMCD) is introduced to achieve an automatic fault diagnosis. Finally, the proposed fault diagnosis method for rolling bearing is applied to analyze the experimental data and the result indicates that the proposed method can effectively diagnose the fault categories and severities of rolling bearings.
Rocznik
Strony
784--794
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, PR China
Bibliografia
  • [1] R. Yan, Y. Liu, R.X. Gao, Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines, Mechanical Systems and Signal Processing 29 (2012) 474–484.
  • [2] C. Li, M. Liang, Y. Zhang, S. Hou, Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis, Mechanical Systems and Signal Processing 31 (2012) 428–446.
  • [3] Y. Yu, D. Yu, J. Cheng, A roller bearing fault diagnosis method based on EMD energy entropy and ANN, Journal of Sound and Vibration 294 (2006) 269–277.
  • [4] J. Luo, D. Yu, M. Liang, A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform, Measurement Science and Technology 24 (5) (2013) 150–158.
  • [5] C. Li, M. Liang, Time–frequency signal analysis for gear box fault diagnosis using a generalized synchrosqueezing transform, Mechanical Systems and Signal Processing 26 (2012) 205–217.
  • [6] Z. Feng, M. Liang, F. Chu, Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples, Mechanical Systems and Signal Processing 38 (1) (2013) 165–205.
  • [7] N.E. Huang, Z. Shen, S.R. Long, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London A 454 (1998) 903–995.
  • [8] N.E. Huang, M.C. Wu, S.R. Long, et al., A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proceedings of the Royal Society of London A 459 (2003) 2317–2345.
  • [9] H. Jiang, C. Li, H. Li, An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis, Mechanical Systems and Signal Processing 36 (2013) 225–239.
  • [10] D. Yu, J. Cheng, Y. Yang, Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings, Mechanical Systems and Signal Processing 19 (2) (2005) 259–270.
  • [11] Y. Lei, J. Lin, Z. He, M.J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing 35 (1–2) (2013) 108–126.
  • [12] X. Zhang, P. Zhou, Filtering of surface EMG using ensemble empirical mode decomposition, Medical Engineering and Physics 35 (4) (2013) 537–542.
  • [13] J. Wu, Y. Tsai, Speaker identification system using empirical mode decomposition and an artificial neural network, Expert Systems with Applications 38 (5) (2011) 6112–6117.
  • [14] A. Janusauskas, V. Marozas, A. Lukoseviciu, Ensemble empirical mode decomposition based feature enhancement of cardio signals, Medical Engineering and Physics 35 (8) (2013) 1059–1069.
  • [15] M.H. Yeh, The complex bidimensional empirical mode decomposition, Signal Processing 92 (2) (2012) 523–541.
  • [16] Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise assisted data analysis method, Advances in Adaptive Data Analysis 1 (1) (2009) 1–41.
  • [17] Y. Lei, Z. He, Y. Zi, EEMD method and WNN for fault diagnosis of locomotive roller bearings, Expert Systems with Applications 38 (6) (2011) 7334–7341.
  • [18] Y. Lei, Z. He, Y. Zi, A new approach to intelligent fault diagnosis of rotating machinery, Expert Systems with Applications 35 (4) (2008) 1593–1600.
  • [19] J.R. Yeh, J.S. Shieh, Complementary ensemble empirical mode decomposition: a noise enhanced data analysis method, Advances in Adaptive Data Analysis 2 (2) (2010) 135–156.
  • [20] J. Zheng, J. Cheng, Y. Yang, Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing, Signal Processing 96 (B) (2014) 362–374.
  • [21] X. He, D. Cai, P. Niyogi, Laplacian Score for Feature Selection. Advances in Neural Information Processing System, MIT Press, Cambridge, MA, 2005.
  • [22] X.Y. Jing, S. Li, D. Zhang, et al., Supervised and unsupervised parallel subspace learning for large-scale image recognition, IEEE Transactions on Circuits and Systems for Video Technology 22 (10) (2012) 1497–1511.
  • [23] C.C. Wang, K. Yuan, P.C. Shen, et al., Applications of fault diagnosis in rotating machinery by using time series analysis with neural network, Expert Systems with Applications 37 (2) (2010) 1696–1702.
  • [24] J. Rafiee, P.W. Tse, A. Harifi, et al., A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system, Expert Systems with Applications 36 (3) (2009) 4862–4875.
  • [25] S. Fei, X. Zhang, Fault diagnosis of power transformer based on support vector machine with genetic algorithm, Expert Systems with Applications 36 (8) (2009) 11352–11357.
  • [26] F.F. Diego, M.R. David, F.R. Oscar, et al., Automatic bearing fault diagnosis based on one-class n-SVM, Computers and Industrial Engineering 64 (1) (2013) 357–365.
  • [27] L. Zhang, G. Xiong, H. Liu, et al., Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference, Expert Systems with Applications 37 (8) (2010) 6077–6085.
  • [28] K. Salahshoor, M. Kordestani, M.S. Khoshro, Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers, Energy 35 (12) (2010) 5472–5482.
  • [29] R. Raghuraj, S. Lakshminarayanan, Variable predictive model based classification algorithm for effective separation of protein structural classes, Computational Biology and Chemistry 32 (4) (2008) 302–306.
  • [30] R. Raghuraj, S. Lakshminarayanan, VPMCD: variable interaction modeling approach for class discrimination in biological systems, FEBS Letters 581 (5–6) (2007) 826–830.
  • [31] W. Chen, J. Zhuang, W. Yu, Measuring complexity using FuzzyEn, ApEn, and SampEn, Medical Engineering and Physics 31 (2009) 61–68.
  • [32] W. Chen, Z. Wang, H. Xie, Characterization of surface EMG signal based on fuzzy entropy, IEEE Transactions on Neural Systems and Rehabilitation Engineering 15 (2) (2007) 266–272.
  • [33] D. Yu, Y. Yang, J. Cheng, Application of time–frequency entropy method based on Hilbert–Huang transform to gear fault diagnosis, Measurement 40 (9–10) (2007) 823–830.
  • [34] Bearing Data Center, Case Western Reserve University. http://csegroups.case.edu/bearingdatacenter/pages/ download-data-file.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31bb1282-747a-47c4-9b45-a8204684836b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.