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UNIQUENESS OF SERIES IN THE FRANKLIN SYSTEM
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Abstract. In 1870 G. Cantor proved that if limN→∞
∑N

n=−N
cneinx = 0, c̄n = cn, then

cn = 0 for n ∈ Z. In 2004 G. Gevorkyan raised the issue that if Cantor’s result extends
to the Franklin system. He solved this conjecture in 2015. In 2014 Z. Wronicz proved that
there exists a Franklin series for which a subsequence of its partial sums converges to zero,
where not all coefficients of the series are zero. In the present paper we show that to the
uniqueness of the Franklin system limn→∞

∑∞
n=0 anfn it suffices to prove the convergence

its subsequence s2n to zero by the condition an = o(
√

n). It is a solution of the Gevorkyan
problem formulated in 2016.
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1. INTRODUCTION

In 1870 G. Cantor ([2]) proved the following result.

Theorem 1.1. If limN→∞
∑N
n=−N cne

inx = 0 for every real number x, where c̄n = cn,
then cn = 0 for n ∈ Z.

By the Gram–Schmidt process to the Schauder basis Ph. Franklin constructed an
orthonormal system of continuous piecewise linear functions with dyadic knots ([4]). It
is an orthonormal Schauder basis in the space C[0, 1], and also in the space L2[0, 1]. In
1963 Z. Ciesielski ([3]) proved exponential type estimates for the Franklin functions.
Since then, it has been studied by many authors from different points of view. In 2004
G. Gevorkyan ([5]) raised the issue if Cantor’s result extends to the Franklin system.
He solved this problem in 2015 (see [6, 7]). In 2014 the author proved the following
theorem.
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Theorem 1.2 ([9]). There exists a nontrivial series in the Franklin system

∞∑

n=0
anfn(x) (1.1)

for which

lim
ν→∞

2ν∑

ν=0
anfn(x) = 0, x ∈ [0, 1]. (1.2)

The purpose of the paper is to prove the ensuing result.

Theorem 1.3. Let the coefficients of the series (1.1) satisfy the condition

an = o(
√
n)

and let (1.2) hold. Then all the coefficients of this series vanish.

It is a solution of a problem of G. Gevorkyan given in [7].

2. PRELIMINARIES

In this section we present some properties of the Franklin system and the Egorov
theorem which play the fundamental role in the proof of Theorem 1.3.

Consider the following sequence {∆n}∞n=1 of dyadic partitions of the interval
I = [0, 1]: ∆n = {sn,i}ni=0, s1,0 = 0, s1,1 = 1,

sn,i =
{

i
2µ+1 , for i = 0, 1, . . . , 2ν,
i−ν
2µ , for i = 2ν + 1, . . . , n (2.1)

for n = 2µ + ν, µ = 0, 1, . . . , ν = 1, 2, . . . , 2µ.
We can obtain the Franklin system by means of cubic splines. We put

f0 = 1, f1 =
√

3(2x− 1).

Let gn be a cubic spline with respect to the partition ∆n, i.e. gn ∈ C2(I) and
it is a polynomial of degree at most 3 in each interval [sn,i−1, sn,i]. We assume that
gn(sn−1,j) = 0 for j = 0, 1, . . . , n − 1 and gn(sn,k) = 1 for sn,k = ∆n \ ∆n−1 with
g′n(0) = g′n(1) = 0. The spline gn is unique. For the proof we refer to [1]. Integrating
by parts, we check that the system {fn}∞n=0, where

fn = g′′n
‖ g′′n ‖

, ‖ g′′n ‖2=
1∫

0

[g′′n(x)]2dx, n = 2, 3, . . .

is orthonormal in the interval I (see [1, 10,11]).
In the sequel we shall need the Ciesielski inequality and the Egorov theorem.
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Theorem 2.1 ([3]). Let {fn}∞n=0 be the Franklin system defined by means (2.1),
∆n = {x0, x1, . . . , xn}, xn = ∆n \∆n−1. There exist constants M > 0 and 0 < r < 1
such that

|fn(x)| ≤M√nrn|x−xn|

for every x ∈ I and n = 0, 1, . . .

Theorem 2.2 ([8]). Let {fn} be a sequence of measurable functions w.r.t. the Lebesgue
measure on the interval I. Assume that fn → f pointwise. Then for any δ > 0, there
exists a measurable set Eδ of I such that m(Eδ) > |I| − δ and fn → f uniformly
on I \ Eδ.

3. PROOF OF THEOREM 1.3

Let Fn(x) = gn(x)
‖g′′n‖ . Then F

′′
n (x) = fn(x). We define

sn(x) =
n∑

i=0
aifn(x), Sn(x) =

n∑

i=0
aiFi(x).

Then S′′n(x) = sn(x).
We assume that (1.2) holds for the series (1.1). We apply the Egorov theorem

to the sequence {s2n}∞n=0. Let E be a set of points x ∈ I such that x ∈ I \ Eδ for
all δ > 0. By the Egorov theorem, for all x1, x2 ∈ E there exists x ∈ I \ E such
that x1 < x < x2. By the continuity of the functions sn, we prove that the points of
the set E are isolated or they are accumulation points.

Let α and β be two consecutive points of E. Then the sequence sn is convergent
uniformly on every closed interval F ⊂ (α, β). Sn is a cubic spline with respect to the
partition

∆n = {xk}nk=0 = {0 = t0 < t1 < . . . < tn = 1},
Sn(xj) = Sk(xj) for xj ∈ ∆k, k < n. Let ti, tj ∈ ∆k for some k, [ti, tj ] ⊂ (α, β). Then

∀ε > 0 ∃n0 ∀n > n0 ∀x ∈ [ti, tj ] : |sn(x)| < ε.

Further, for any n > n0,

Sn(tj)− Sn(ti)
tj − ti

= S′n(ζn) = C = const

for some ζn ∈ (ti, tj), n > k. This follows from the fact that Sn(tl) = Sk(tl) for n > k
and tl ∈ ∆k. Hence

S′n(x) = S′n(ζn) +
x∫

ζ

sn(t)dt (3.1)

and the sequence {sn} is uniformly convergent to the constant C = S′n(ζn) in the
interval [ti, tj ]. Repeating this reasoning, we prove that the sequence {Sn} is uniformly
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convergent to the function Sn(ti) +C(x− ti) in the interval [ti, tj ]. Applying the Rolle
theorem to the functions Fn, and (3.1) with Theorem 2.1 we obtain the following
inequalities:

|F ′n(x)| ≤ M1√
n
rn|x−xn| and |Fn(x)| ≤ M2

n
√
n
rn|x−xn|,

where M1 and M2 are constants.
Let

cn = max
i≥n
|ai|√
i
, n ≥ 0. (3.2)

Hence ∣∣∣∣∣
m+l∑

k=m
akFk(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
m+l∑

k=m
ck
√
kFk(x)

∣∣∣∣∣ < M2

∞∑

n=2i

cn
n
rn|x−xn|,

where 2i < m < m+ l ≤ 2i+j .
Let

∆2j+1 = {0 = t0 < t1 < . . . < t2j+1 = 1}.

Then
tk+1 − tk = 1

2j+1 , k = 0, 1, . . . , 2j+1 − 1.

Hence for x ∈ [tk, tk+1]

2j+1∑

n=2j+1

1
n
rn|x−xn| ≤

2j+1∑

n=2j+1

1
n
r2jkn2−j−1 ≤ 1

2j−1

∞∑

i=0
(
√
r)i = 1

2j−1
1

1−√r ,

where 0 ≤ kn ≤ 2j+1, kn 6= km for n 6= m.
By summation over j, we obtain

∀m, l ∈ N :
m+l∑

k=m

√
k|Fk(x)| < 2M2

1−√r .

Proceeding as in the proof of the Dirichlet criterion and applying the fact that the
sequence (3.2) is diminishing, we prove that the sequence {Sn} is uniformly convergent
to the continuous function S. Hence the function S is a broken line with knots in the
set E. We shall prove that the set E is empty.

We assume that α, β and γ are consecutive points of the set E. Then the function
S(x) = limn→∞ Sn(x) is linear in the intervals [α, β] and [β, γ].

Let tα = tjn ∈ (α, β), tγ = tln ∈ (β, γ) and β ∈ [tkn , tkn+1). Later we shall written
j instead of jn and l instead of ln. Since an addition a linear function to the function
S does not change its second derivative, we may assume that S(x) = 0 for x ∈ [α, β]
and S(x) = ax+ b for x ∈ [β, γ], where a and b are some constants.
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Let S′(tα) = αn and S′(tγ) = γn. The cubic spline Sn is defined in the interval
[tα, tγ ] by the following conditions:

Sn(ti) = S(ti) = 0 for ti ∈ ∆n ∩ [tα, β],
Sn(tj) = S(tj) = 0 for tj ∈ ∆n ∩ [β, tγ ],
S′n(tα) = αn, S

′
n(tγ) = γn.

We define the cubic spline Sn by the following system of equations (see [1]):

4Mj +Mj+1 = 2dj ,
Mi−1 + 4Mi +Mi+1 = 2di, i = j + 1, . . . , l − 1,

Ml−1 + 4Ml = 2dl,
(3.3)

where Mi = S′′(ti), i = j, j + 1, . . . , l,

dj = 6
tj+1 − tj

·
(
Sn(tj+1)− Sn(tj)

tj+1 − tj
− αn

)
= S′′n(ξn,j), ξn,j ∈ (tj , tj+1),

dl = 6
tl − tl−1

·
(
γn −

Sn(tl)− Sn(tl−1)
tl − tl−1

)
= S′′n(ξn,l), ξn,l ∈ (tl−1, tl),

di = 6
Sn(ti+1)−Sn(ti)

ti+1−ti − Sn(ti)−Sn(ti−1)
ti−ti−1

ti+1 − ti−1
= S′′n(ξn,i), ξn,i ∈ (ti−1, ti+1), j < i < l.

The function Sn interpolate the function S at the points ti, j ≤ i ≤ l. Since the
sequences {S′n} and {S′′n} are uniformly convergent in the intervals [z1, z2] ⊂ (α, β)
and [z3, z4] ⊂ (β, γ), tj ∈ [z1, z2], tl ∈ [z3, z4], we conclude that

lim
n→∞

αn = lim
n→∞

S′′n(ξn,j) = 0, ξn,j ∈ (tj , tj+1)

and
lim
n→∞

(γn − a) = lim
n→∞

S′n(ξn,l) = 0, ξn,l ∈ (tl−1, tl).

We may write the system (3.3) as follows:

AnMn = Dn. (3.4)

Further,
Sn = Fn +Hn,

where the cubic splines Fn and Hn are defined by the following conditions:

Fn(ti) = S(ti) = 0 for ti ∈ ∆n ∩ [tα, β],
Fn(tj) = S(tj) for tj ∈ ∆n ∩ [β, tγ ],
F ′n(tα) = 0, F ′n(tγ) = a

and
Hn(ti) = 0 for ti ∈ ∆n ∩ [tα, tγ ],
H ′n(tα) = αn, H ′n(tγ) = γn.
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Note that
dHn,tα = H ′′n(ζn,j), dHn,tγ = H ′′n(ζn,l).

Since
lim
n→∞

H ′′n(ζn,j) = lim
n→∞

H ′′n(ζn,l) = 0,

then the function Hn is convergent uniformly to 0 on the interval [tα, tγ ]. Hence,
it suffices to prove that

lim
n→∞

|F ′′n (β)| =∞.

The function Fn is determined by the system (3.4) with

Dn = [0, . . . , 2dk, 2dk+1, 0, . . . , 0]T .

Let
β = tk + th, h = ti+1 − ti = 1

n
, 0 ≤ t ≤ 1, i = 0, 1, . . . , n− 1.

Then

2dk = 6a(1− t)
h

, 2dk+1 = 6at
h
, 2di = 0 for j ≤ i < l, i 6= k, k + 1. (3.5)

We write the system (3.3) for the function Fn as follows:

AnMn = DF,n, (3.6)

where
DF,n = [0, . . . , 0, 2dk, 2dk+1, 0, . . . , 0]T .

We may write the determinant detAn in the form

detAn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 1 0 0 . . . 0 0 0 0 0 . . . 0 0 0 0
0 α1 1 0 . . . 0 0 0 0 0 . . . 0 0 0 0
0 0 α2 1 . . . 0 0 0 0 0 . . . 0 0 0 0
− − − − − − − − − − − − − − −
0 0 0 0 . . . αk−1 1 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 αk 1 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 1 αl−k−1 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 1 αl−k−2 0 . . . 0 0 0 0
− − − − − − − − − − − − − − −
0 0 0 0 . . . 0 0 0 0 0 . . . 0 α2 0 0
0 0 0 0 . . . 0 0 0 0 0 . . . 0 1 α1 0
0 0 0 0 . . . 0 0 0 0 0 . . . 0 0 1 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4α1α2 · . . . · αk−1(αkαl−k−1)αl−k−2 · . . . · α2α1 · 4,

where α1 = 15
4 , αi+1 = 4− 1

αi
, i = 1, 2, . . .
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We have
3 < αi+1 < αi < 4, i = 1, 2, . . . ,

and
lim
m→∞

αm = 2 +
√

3 > 5
2 .

By the Cramer formula for the system (3.6) and (3.5), we obtain

Mk = 12an[αl−k−1 − (αl−k−1 + 1)t]
αkαl−k−1 − 1

and
Mk+1 = 12an[(αk + 1)t− 1]

αkαl−k−1 − 1 .

Further, we have

S′′n(t) = Mk(1− t) +Mk+1t, t ∈ [0, 1], β = tk + t

n

and

S′′n(t) = 12an
αkαl−k−1 − 1{[αl−k−1 − (αl−k−1 + 1)t](1− t) + [(αk + 1)t− 1]t}

= 12an
αkαl−k−1

gn(t),

gn(t) = (αk + αl−k−1 + 2)t2 − 2(αl−k−1 + 1)t+ αl−k−1,

∆ = 4(1− αkαl−k−1) < 0,
gn(0) = αl−k−1.

Hence
lim
n→∞

|sn(β)| = lim
n→∞

|S′′n(β)| =∞

and it is a contradiction to the assumption that limn→∞ |sn(β)| = 0. Hence β /∈ E.
In the same way we prove that each knot of the broken line S does not belong to the
set E and we have proved that S is a linear function.

Thus S′′n = S′′ = 0. Because of the fact that the Franklin system is the Schauder
basis in the space C[0, 1], we conclude that all the coefficients of the series (1.1) vanish
and we have proved the theorem.
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