HYDROACOUSTICS
4, 139-142 (2001)

NONLINEAR PARAMETERS AND SOUND SPEED IN ACOUSTICS
AND ITS EVALUATION FOR REAL GASES AND LIQUIDS.

Sergey Leble. Anna Perelomova, Magdalena Kusmirek - Ochrymiuk
Technical University of Gdansk. ul.Narutowicza 11/12, 80-952 Gdansk, Poland
leble,anpe,ochrymiuk: @mif.pg.gda.pl

Values of nonlinear parameter B=A and sound velocity are calculated in the theory of
real (van der Waals) and semi-ideal gases and compared with experimental data. Both
thermic and the caloric equations of state are revisited and used in Taylor series coefficients
evaluation. The equations describe the non—adiabaticity of the process of the sound wave

propagation.
INTRODUCTION

The main idea of the present investigation is to use appropriate equations of states to
derive expressions for the parameter of nonlinearity and the sound speed in real fluids, as
functions of equilibrium temperature T and mass density p (Tp, pa). There are two equations
of state, for energy E(T, p) and pressure p(T, p) for isotropic fluids, which close the dynamic
system of equations. It is known from thermody-namics and statistical physics, that the form
of these equations is defined by the potential energy of molecules interaction. Generally, both
equations may be thought as series of corrections due to non—ideality of fluid. Up to date,
physical chemistry does great efforts to account these correction terms, the difficulties are
mainly con-cern with numerical investigation. The results of physical chemistry may be
applied to evaluate the acoustic parameters. The advantages of such approach are obvious:
the wide range of background parameters may be accounted. Further, the final for-mulas are
analytic. It is also desired to start from the partition function of ensemble in order to satisfy a

relation
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that appears as a condition for compatibility of caloric and thermal equations of state. If
both internal energy and pressure are found from partition function, the equation (1) satisfies
automatically. We should complete a standard gas dynamics system with relation E = E(p,)
that follows from E(T, p) and p(T, p). There is a very narrow class of models with equations
of state in the form of concrete functions: ideal and semi—ideal gases, for example. For the
majority of other substances, even homogeneous, there are no general-purpose equations of
state. Generally, equation of state should be expanded in the Taylor series in the vicinity of

equilibrium state (disturbed values are primed):
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For example, an ideal gas treated by E = p/(p (y- 1)) yields in coefficients:

Ei=Es=1/(y-1), Ey=Es=-1/(y-1), E;=0 3)

The parameters of nonlinearity are defined by [1]:
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The equivalent system (v,.p.,p,.r,,t,) in non-dimensional variables: v=ocv,,
p=ac’p,p., P=0p,p., x=Ax,, t=t,A/c where ¢ is adiabatic sound velocity
¢ =p,(1-E,))(p,E,), A means characteristic scale of disturbance and o — coefficient

responsible for amplitude of acoustic wave, may be written in the matrix form (asterisks for
dimensionless variables will be later omitted):
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where: W' = (v, p, p) is variables column and L is the linear matrix operator.

Y =a|—vp, +v,(D,p+D,p) |, F=a|v(Dip*+D,p* +Dspp) (6)
—up, =P 0

Down index '’ means 9/0x and symbols D1 ... D5 mean dimensionless coefficients,
depending on El... ES' The constants A, B, C relate to coefficients from (6) in the following

way:

A =[(1-E2)/Eilpo, B =-(Di+D2+ DI(I - E2)/Eilpo. (7N
C = (D + Dy + 1Dy + 2) — 2(D3 + Dy + Ds))[(1 = E2)/Er]po. (8)

For ideal gas we find the coefficient to be Dy = -, D», Ds, Ds, Ds = 0 (where Yy = ¢p/co), so
A =7po, B=7(y- Dpo, C=7(y— DY - 2)po.

STATISTICAL MECHANICS ASPECTS.
GASES OBEYING THE VAN DER WAALS EQUATION OF STATE
AND SEMI-IDEAL ONES. '

It is known that the interacting forces between the molecules of nonideal gases and
liguids cannot be neglected except first approximation. The more a gas is condensed, the
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rougher this approximation becomes. For a system comprised of interacting particles, the
partition function must be written for the ensemble of molecules, since the potential energies
of molecules cannot be split [2]. If the kinetic energy is small compared with the atomic and
nuclear energies, the energy of the ensemble may be considered to be a function of only the
positions of the molecules. If the equations of state would be found through the partition
function, the equation (1) were satisfied automatically. Generally, the partition function for
the ensemble looks
2=Z,Z,(ZZoZo)" ©)
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where Z refer to the partition functions of the ensemble, N is the number of particles in

the ensemble, Z refer to the partition function for each particle. Z s, Zp, mean the
translation partition function and that for the potential energy. Here, vibrational, rotational,
electronic, and nuclear contributions to the total partition function are involved. In the case of

an ideal gas, the potential energy term E (q) = z:iiz:'ep(l}j) ; ep(rij) is potential energy due

to interaction between pair of molecules i and j equals to zero. Then, Z , from (9):
7 =vi[1+L1n2 2 = [f,dt, = | 4m’f(r)d 10
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From statistical mechanics, the thermic equation of state is given by:
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(where k is Boltzmann’s constant) while the only factor of the partition function Z dependent

on volume is Z, (10). If we assume that %NE% is very small compared with unity, the

proceeding equation becomes: pV = NKT(1 - %Nz %). The internal energy U for a system of

N particles and internal energy E per unit mass (E = (UNo)/Nu), where No - Avogadro

number, [ - molar mass, are:
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Here dependence on T of only 7, is assumed in (9). Symbol f notes number of degrees
of freedom of each molecule (sum of translation and rotational movements).

When we assume that < e,(r) > is small in comparison with kT, for Van der Waals gas
model we find: B = — 2(b — aNo/(RT)) where a, b — the known VdW constants, R - universal
gas constant. The internal energy per unit mass follows from (12). To find some
corresponding coefficients for the semi—ideal gas, we have take into account Z from (9), so
[3]:

[
E=E, +R/WY 6, /e -1
1
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where: C, f, 6; — vibrational specific heat, number of degrees of freedom of a molecule,

characteristic temperatures of oscillation.

Gas | Model of ideal gas | Model of semi-ideal zas | Experitmental data
BJ/A cim /sl B/A clm/s] B/A clm /sl
He | 067 $r2.9 0467 G72.0 (.66 71
No | G.di} 336.9 0.40 336.9 0.401 3340
oo | G40 337.0 .40 347.0 (.40 336338
COy | 033 262.2 (.24 255.0 (.31 256.7
CHy | .33 434.7 0.2 4313 (.30 430
TABLE 1. All values in table are obtained for T = 273,15K.
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FIGURE 1. Comparison of theoretical (Van der Waals) and experimental values of
sound velocity: a) CO, gas, 323.95 K, 0.3 MHz, [4]; b) air gas, 298 K, 486 kHz, [5].
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FIGURE 2. Temperature dependence of B/A
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a) diatomic and b) polyatomic gases.
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