PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technology for improving modern polymer composite materials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the work was to determine the properties of the developed material (bitumen). In this study, the technological process was improved by modifying low-molecular weight butadiene and chloroprene rubbers structured with carbon nanotubes (CNTs) to obtain a material with the necessary set of desired properties. The article shows the possibility of modifying the bituminous binder of asphalt concrete with elastomeric rubbers structured with CNTs. The article also considers the use of promising polymer composite materials and the increase in their reliability and service life. Improvements in the properties of the composite and in the technology due to direct reinforcement with nanomaterials are described. The article defines the areas of application and recommended improvement of composite materials, as well as existing limitations.
Wydawca
Rocznik
Strony
27--41
Opis fizyczny
Bibliogr. 44 po., rys., tab.
Twórcy
autor
  • School of Civil Engineering, North Minzu University, 750021, 204 Wenchang Road, Yinchuan, NingXia, P.R. China
  • Department of Computer Technologies of Construction and Reconstruction of Airports, Faculty of Architecture, Civil Engineering and Design, National Aviation University, 03058, 1 Liubomyra Huzara Ave., Kyiv, Ukraine
  • School of Civil Engineering, North Minzu University, 750021, 204 Wenchang Road, Yinchuan, NingXia, P.R. China
  • Institute of the Chemistry of High-Molecular Compounds, National Academy of Sciences of Ukraine, 02160, 48 Kharkivske Highway, Kyiv, Ukraine
autor
  • Department of Computer Technologies of Construction and Reconstruction of Airports, Faculty of Architecture, Civil Engineering and Design, National Aviation University, 03058, 1 Liubomyra Huzara Ave., Kyiv, Ukraine
autor
  • School of Civil Engineering, North Minzu University, 750021, 204 Wenchang Road, Yinchuan, NingXia, P.R. China
Bibliografia
  • [1] Plank J, Schroefl C, Gruber M, Lesti M, Sieber R. Effectiveness of polycarboxylate superplasticizers in ultra-high strength concrete: The importance of PCE compatibility with silica fume. J Adv Concrete Technol. 2009;7(1):5–12; https://doi.org/10.3151/jact.7.5
  • [2] Sobolev K, Ferrada Gutiérrez M. How nanotechnology can change the concrete world. Prog Nanotechnol. 2014; 1:113–116; https://doi.org/10.1002/9780470588260.ch16
  • [3] Ghuzlan KA, Al-Khateeb GG, Qasem Y. Rheological properties of polyethylene-modified asphalt binder. Athens J Technol Eng. (2015);2(2):75–88; https://doi.org/10.30958/ajte.2-2-1
  • [4] Trykoz L, Kamchatnaya S, Pustovoitova O, Atynian A. Reinforcement of composite pipelines for multipurpose transportation. Transp Probl. 2018;13(1):69–79; https://doi.org/10.21307/tp.2018.13.1.7.
  • [5] Trykoz LV, Bagiyanc IV, Nykytynskyj AV, Atynian AO. Impact of polymer additives on concrete strength and electrical resistance. Sci Bull Construct. 2019;98(4):244–250.
  • [6] Merusi F, Giuliani F. Intrinsic resistance to non-reversible deformation in modified asphalt binders and its relation with specification criteria. Const Build Mater. 2011;25(8):3356–3366; https://doi.org/10.1016/j.conbuildmat.2011.03.026
  • [7] Morgan P, Mulder, A. The Shell bitumen industrial handbook. Surrey: Shell Bitumen; 1995.
  • [8] Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interf Sci. 2009;145(1–2):42–82; https://doi.org/10.1016/j.cis.2008.08.011
  • [9] NECEPT. Superpave System. Northeast Center for Excellence for Pavement Technology. 2001. http://www.superpave.psu.edu/superpave/system.html
  • [10] McNally T. Polymer modified bitumen: Properties and characterisation. Elsevier; 2011.
  • [11] Lu X, Isacsson U. Effect of ageing on bitumen chemistry and rheology. Const Build Mater. 2002;16(1):15–22; https://doi.org/10.1016/s0950-0618(01)00033-2
  • [12] Trykoz L, Kamchatnaya S, Pustovoitova O, Atynian A, Saiapin O. Effective waterproofing of railway culvert pipes. Baltic JRoad Bridge Eng. 2019;14(4):473–483; https://doi.org/10.7250/bjrbe.2019-14.453
  • [13] Trykoz L, Kamchatnaya S, Borodin D, Atynian A, Tkachenko R. Protection of railway infrastructure objects against electrical corrosion. Anti Corr Methods Materials. 2021;68(5):380–384; https://doi.org/10.1108/acmm-05-2021-2483
  • [14] Cheraghian G, Cannone Falchetto A, You Z, Chen S, Kim YS, Westerhoff J, et al. Warm mix asphalt technology: An up to date review. J Cleaner Prod. 2020;268:122–128; https://doi.org/10.1016/j.jclepro.2020.122128
  • [15] Atynian A, Bukhanova K, Tkachenko R, Manuilenko V, Borodin D. Energy efficient building materials with vermiculite filler. Int J Eng Res Africa. 2019;43:20–24; https://doi.org/10.4028/www.scientific.net/jera.43.20
  • [16] Solomentsev AB. Classification and nomenclature of modifying additives for bitumen. Sci Technol Road Industry. 2008;1:14–16.
  • [17] Plewa A. The effect of modifying additives on the consistency and properties of bitumen binders. Adv Mater Technol. 2016;4:35–40; https://doi.org/10.17277/amt.2016.04.pp.035-040
  • [18] Sun T, Sheng H. Heat transfer analysis of microwave hot recycling for asphalt pavement. J Eng. 2019;2020(1):1–5; https://doi.org/10.1049/joe.2019.1047
  • [19] Xu X, Gu H, Dong Q, Li J, Jiao S, Ren J. Quick heating method of asphalt pavement in hot in-place recycling. Const Build Mater. 2018;178:211–218; https://doi.org/10.1016/j.conbuildmat.2018.05.091
  • [20] Pan Y, Liu G, Tang D, Han D, Li X, Zhao Y. A rutting-based optimum maintenance decision strategy of hot in-place recycling in semi-rigid base asphalt pavement. J Cleaner Prod. 2021;297:126663; https://doi.org/10.1016/j.jclepro.2021.126663
  • [21] Golestani B, Nam BH, Moghadas Nejad F, Fallah S. Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Const Build Mater. 2015;91:32–38; https://doi.org/10.1016/j.conbuildmat.2015.05.019
  • [22] Polacco G, Berlincioni S, Biondi D, Stastna J, Zanzotto L. Asphalt modification with different polyethylene-based polymers. Euro Polymer J. 2005;41(12):2831–2844; https://doi.org/10.1016/j.eurpolymj.2005.05.034
  • [23] Becker Y, Méndez MP, Rodriguez Y. Polymer modified asphalt. Vis Tecnolog. 2001;9:39–50.
  • [24] Remišová E, Holý M. Changes of properties of bitumen binders by additives application. IOP Conf Ser Mater Sci Eng. 2017;245:032003; https://doi.org/10.1088/1757-899x/245/3/032003
  • [25] Porto M, Caputo P, Loise V, Eskandarsefat S, Teltayev B, Oliviero Rossi C. Bitumen and bitumen modification: A review on latest advances. Appl Sci. 2019;9(4):742; https://doi.org/10.3390/app9040742
  • [26] Polacco G, Stastna J, Biondi D, Zanzotto L. Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Curr Opin Coll Interf Sci. 2006;11(4):230–245; https://doi.org/10.1016/j.cocis.2006.09.001
  • [27] Rossi D, Filippi S, Merusi F, Giuliani F, Polacco G. Internal structure of bitumen/polymer/wax ternary mixtures for warm mix asphalts. J Appl Polymer Sci. 2013;129(6):3341–3354; https://doi.org/10.1002/app.39057
  • [28] Moghadas Nejad F, Azarhoosh A, Hamedi GH. Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt – A laboratory study. Road Mater Pavement Design. 2014;15(3):746–756; https://doi.org/10.1080/14680629.2013.876443
  • [29] Airey G. Rheological properties of styrene butadiene styrene polymer modified road bitumens’. Fuel. 2003;82(14):1709–1719. https://doi.org/10.1016/s0016-2361(03)00146-7
  • [30] Yang C, Xie J, Wu S, Amirkhanian S, Zhou X, Ye Q, et al. Investigation of physicochemical and rheological properties of SARA components separated from bitumen. Const Build Mater. 2020;235:117437; https://doi.org/10.1016/j.conbuildmat.2019.117437
  • [31] Wang Y, Sun L, Qin Y. Aging mechanism of SBS modified asphalt based on chemical reaction kinetics. Const Build Mater. 2015;91:47–56; https://doi.org/10.1016/j.conbuildmat.2015.05.014
  • [32] Kaya D, Topal A, McNally T. Relationship between processing parameters and aging with the rheological behaviour of SBS modified bitumen. Const Build Mater. 2019;221:345–350; https://doi.org/10.1016/j.conbuildmat.2019.06.081
  • [33] Kaya D, Topal A, Gupta J, McNally T. Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen. Const Build Mater. 2020;235:117450; https://doi.org/10.1016/j.conbuildmat.2019.117450
  • [34] Pyshyev S, Gunka V, Grytsenko Y, Bratychak M. Polymer modified bitumen: Review. Chem Chem Technol. 2016;10(4):631–636; https://doi.org/10.23939/chcht10.04si.631
  • [35] Nikolaides A. Highway engineering: pavements, materials and control of quality. USA: CRC Press; 2014.
  • [36] Bieliatynskyi A., Yang Sh., Krayushkina K., Shao M., Ta M. Study of the possibility of using phosphorous slags in road construction. Eng Sci Technol Int J. 2022; 101262: 1–10; https://doi.org/10.1016/j.jestch.2022.101262
  • [37] Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Study of carbon nanomodifier of fly ash in cement concrete mixtures of civil engineering. Sci Eng Comp Mater. 2022; 29(1): 227–241; https://doi.org/10.1515/secm-2022-0018
  • [38] Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Comparative analysis of the influence of various materials on the state of the roadside environment during the road repair. Environ. Sci. Pollut. Res. 2022; https://doi.org/10.1007/s11356-022-23212-4
  • [39] Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. The use of fiber made from fly ash from power plants in China in road and airfield construction Const Build Mater. 2022; 323; https://doi.org/10.1016/j.conbuildmat.2022.126537
  • [40] Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Study of crushed stone-mastic asphalt concrete using fiber from fly ash of thermal power plants. Case Stud. Constr. Mater. 2022; 16; https://doi.org/10.1016/j.cscm.2022.e00877
  • [41] Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Peculiarities of the use of the cold recycling method for the restoration of asphalt concrete pavements. Case Stud. Constr. Mater. 2022; 16; https://doi.org/10.1016/j.cscm.2022.e00872
  • [42] Yang Sh., Bieliatynskyi A., Pershakov V., Shao M., Ta M. Asphalt concrete based on a polymer–bitumen binder nanomodified with carbon nanotubes for road and airfield construction. J. Polym. Eng. 2022; 42(5): 458–466; https://doi.org/10.1515/polyeng-2021-0345
  • [43] Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Features of the hot recycling method used to repair asphalt concrete pavements. Mater. Sci.-Pol. 2022; 40(2): 181–195; https://doi.org/10.2478/msp-2022-0021
  • [44] Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Investigation of the properties and technologies of epoxy asphalt concrete preparation with the addition of fiber from fly ash of thermal power plants. Eur. J. Environ. Civ. 2022; https://doi.org/10.1080/19648189.2022.2110160
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31b46acf-ee9e-42d1-8e96-03fb0caa8516
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.